Skip to main content
Log in

Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin. The mean black carbon concentration is 9.5 μg m−3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1–2 m s−1) wind speed, as compared to calm or turbulent atmospheric conditions.

摘 要

本研究针对印度恒河盆地阿格拉地区的大气黑炭浓度变化特征进行了分析. 研究表明, 阿格拉地区黑炭的年均浓度为 9.5 µg m−3. 但由于生物质/化石燃料的燃烧, 黑炭浓度季节变化幅度十分剧烈. 由于冬季夜间边界层高度较低, 同时采暖和烹饪燃烧大量的化石燃料, 黑炭浓度通常在这个季节的夜间达到最高. 季风来临季节, 雨水的清洗作用和较好的大气扩散条件导致这一季节黑炭浓度最低. 除了化石燃料燃烧较多的冬季(12 月份)外, 其他季节黑炭和棕炭的比例均低于 1. 这表征了生物质/化石燃料燃烧对黑炭的贡献十分显著. 通过 ANOVA 统计方法研究了黑炭浓度季节变化与气象因子的相关性, 发现黑炭浓度季节变化与风速和温度有明显的负相关关系. 另外, 相对于静风和湍流旺盛时段, 中等风速(1–2 m s‒1)时黑炭浓度更高.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aruna, K., T. V. Lakshmi Kumar, D. N. Rao, and B. V. Krishna Murthy, 2013: Black carbon aerosols in a tropical semi-urban coastal environment: Effects of boundary layer dynamics and long range transport. Journal of Atmospheric and Solar-Terrestrial Physics, 104, 116–125, doi: 10.1016/j.jastp.2013.08.020.

    Article  Google Scholar 

  • Babu, S. S., and K. K. Moorthy, 2002: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett., 29, 13-1–13-4, doi: 10.1029/2002GL015662.

    Google Scholar 

  • Badarinath, K. V. S., T. R. Kiran Chand, and V. K. Prasad, 2006: Agriculture crop residue burning in the Indo-Gangetic Plains- A study using IRS-P6 AWiFS satellite data. Current Science, 91(8), 1085–1089.

    Google Scholar 

  • Bian, H., X. X. Tie, J. J. Cao, Z. M. Ying, S. Han, and Y. Xue, 2011: Analysis of a severe dust storm event over China: Application of the WRF-dust model. Aerosol and Air Quality Research, 11, 419–428, doi: 10.4209/aaqr.2011.04.0053.

    Article  Google Scholar 

  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109(D14), D14203, doi: 10.1029/2003JD003697.

    Article  Google Scholar 

  • Cao, J. J., C. S. Zhu, J. C. Chow, J. G. Watson, Y. M. Han, G. H. Wang, Z. X. Shen, and Z. S. An, 2009: Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos. Res., 94, 194–202, doi: 10.1016/j.atmosres.2009.05.009.

    Article  Google Scholar 

  • Chakrabarty, R. K., S. Pervez, J. C. Chow, J. G. Watson, S. Dewangan, J. Robles, and G. Tian, 2014: Funeral pyres in South Asia: Brown carbon aerosol emissions and climate impacts. Environmental Science & Technology Letters, 1, 44–48, doi: 10.1021/ez4000669.

    Article  Google Scholar 

  • Chatterjee, A., C. Dutta, T. K. Jana, and S. Sen, 2012: Fine mode aerosol chemistry over a tropical urban atmosphere: Characterization of ionic and carbonaceous species. Journal of Atmospheric Chemistry, 69, 83–100, doi: 10.1007/s10874-012- 9231-8.

    Article  Google Scholar 

  • Chowdhury, Z., M. Zheng, J. J. Schauer, R. J. Sheesley, L. G. Salmon, G. R. Cass, and A. G. Russell, 2007: Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J. Geophys. Res., 112(D15), D15303, doi: 10.1029/2007JD008386.

    Article  Google Scholar 

  • Cooke, W. F., and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101(D14), 19395–19409, doi: 10.1029/96JD00671.

    Article  Google Scholar 

  • Crilley, L. R., and Coauthors, 2015: Sources and contributions of wood smoke during winter in London: Assessing local and regional influences. Atmospheric Chemistry and Physics, 15, 3149–3171, doi: 10.5194/acp-15-3149-2015.

    Article  Google Scholar 

  • Draxler, R. R., and G. D. Ralph, 2003: HYSPLIT (Hybrid Single- Particle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY Website NOAA Air Resource Laboratory Silver Spring, MD. [Available online from http://www. arl.noaa.gov/ready/hysplit4.html]

    Google Scholar 

  • Drinovec, L., and Coauthors, 2015: The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 8, 1965–1979, doi: 10.5194/amt-8-1965-2015.

    Article  Google Scholar 

  • Dumka, U. C., K. K. Moorthy, R. Kumar, P. Hegde, R. Sagar, P. Pant, N. Singh, and S. S. Babu, 2010: Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos. Res., 96, 510–521, doi: 10.1016/j.atmosres. 2009.12.010.

    Article  Google Scholar 

  • Guha, A., and Coauthors, 2015: Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol and Air Quality Research, 15, 786–798, doi: 10.4209/aaqr.2014.02.0029.

    Article  Google Scholar 

  • Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Science of The Total Environment, 36, 191–196, doi: 10.1016/0048-9697(84)90265-1.

    Article  Google Scholar 

  • Haywood, J. M, and K. P. Shine, 1997: Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Quarterly Journal of Royal Meteorological Society, 123, 1907–1930, doi: 10.1002/qj.49712354307.

    Article  Google Scholar 

  • Herich, H., C. Hueglin, and B. Buchmann, 2011: A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmospheric Measurement Techniques, 4, 1409–1420, doi: 10.5194/amt-4-1409-2011.

    Article  Google Scholar 

  • Highwood, E. J., and R. P. Kinnersley, 2006: When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32, 560–566, doi: 10.1016/j.envint.2005.12.003.

    Article  Google Scholar 

  • Indian Network for Climate Change Assessment (INCCA), 2011: National Carbonaceous Aerosols Programme (NCAP), science plan. Ministry of Environment & Forest, Ministry of Earth Sciences, Ministry of Science & Technology and Indian Space Research Organization, India.

  • IPCC, 2007: Climate Change 2007: The Physical Sciences Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

  • Jin, M. L., J. M. Shepherd, and M. D. King, 2005: Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res., 110(D10), D10S20, doi: 10.1029/2004JD005081.

    Article  Google Scholar 

  • Kanokkanjana, K., P. Cheewaphongphan, and S. Garivait, 2011: Black carbon emission from paddy field open burning in Thailand. Proc. 2nd International Conference on Environmental Science and Technology, IPCBEE Vol. 6, IACSIT Press, Singapore.

    Google Scholar 

  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs, 2004: Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 109(D21), D21208, doi: 10.1029/2004JD004999.

    Article  Google Scholar 

  • Kothari, C. R., 2004: Research Methodology: Methods and Techniques. 2nded., New Age International Publishers, 418 pp.

    Google Scholar 

  • Kumar, M., K. Lipi, S. S. Sureshbabu, and N. C. Mahanti, 2011: Aerosol properties over Ranchi measured from aethalometer. Atmospheric and Climate Sciences, 1, 91–94, doi: 10.4236/acs.2011.13010.

    Article  Google Scholar 

  • Kumar, R., and K. M. Kumari, 2015: Aerosols and trace gases characterization over Indo-Gangetic plain in semiarid region. Urban Climate, 12, 11–20, doi: 10.1016/j.uclim.2014.12.001.

    Article  Google Scholar 

  • Kumar, R., A. Rani, K. M. Kumari, and S. S. Srivastava, 2003: Direct measurement of atmospheric dry deposition to natural surfaces in a semiarid region of north central India. J. Geophys. Res., 108(D20), 4625, doi: 10.1029/2002JD003194.

    Article  Google Scholar 

  • Kumar, R., S. S. Srivastava, and K. M. Kumari, 2007: Characteristics of Aerosols over Suburban and urban site of semiarid region in India: Seasonal and spatial variation. Aerosol and Air Quality Research, 7, 531–549.

    Article  Google Scholar 

  • Kunhikrishnan, P. K., K. S. Gupta, R. Ramachand ran, J. W. Jeeava Prakash, and K. N. Nair, 1993: Study on thermal internal boundary layer structure over Thumba, India. Annales Geophysicae, 11, 52–60.

    Google Scholar 

  • Latha, K. M., and K. V. S. Badarinath, 2005: Environmental pollution due to black carbon aerosols and its impacts in a tropical urban city. Journal of Quantitative Spectroscopy and Radiative Transfer, 92(3), 311–319, doi:10.1016/j.jqsrt.2004.07.026.

    Article  Google Scholar 

  • Latha, R., B. S. Murthy, K. Lipi, M. K. Srivastava, and M. Kumar, 2017: Absorbing aerosols, possible implication to crop yielda comparison between IGB stations. Aerosol and Air Quality Research, 17, 693–705, doi: 10.4209/aaqr.2016.02.0554.

    Article  Google Scholar 

  • Li, C. L., and Coauthors, 2016: Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nature Communications, 7, 12574, doi: 10.1038/ncomms12574.

    Article  Google Scholar 

  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier, 1996: A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research, 101(D14), 19411–19432, doi: 10.1029/95JD03426.

    Article  Google Scholar 

  • Murari, V., M. Kumar, N. Singh, and R. S. Singh, 2016: Particulate morphology and elemental characteristics: Variability at middle Indo-Gangetic Plain. Journal of Atmospheric Chemistry, 73, 165–179, doi: 10.1007/s10874-015-9321-5.

    Article  Google Scholar 

  • Nair, V. S., and Coauthors, 2007: Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. J. Geophys. Res., 112(D13), D13205, doi: 10.1029/2006JD008099.

    Article  Google Scholar 

  • Paliwal, U., M. Sharma, and J. F. Burkhart, 2016: Monthly and spatially resolved black carbon emission inventory of India: Uncertainty analysis. Atmospheric Chemistry and Physics, 16, 12457–12476, doi: 10.5194/acp-16-12457-2016.

    Article  Google Scholar 

  • Pant, P., P. Hegde, U. C. Dumka, R. Sagar, S. K. Satheesh, K. K. Moorthy, A. Saha, and M. K. Srivastava, 2006: Aerosol characteristics at a high-altitude location in central Himalayas: Optical properties and radiative forcing. J. Geophys. Res., 111(D17), D17206, doi: 10.1029/2005JD006768.

    Article  Google Scholar 

  • Parashar, D. C., R. Gadi, T. K. Mandal, and A. P. Mitra, 2005: Carbonaceous aerosol emissions from India. AtmosphericEnvironment, 39, 7861–7871, doi: 10.1016/j.atmosenv.2005.08.034.

    Article  Google Scholar 

  • Pathak, B., G. Kalita, K. Bhuyan, P. K. Bhuyan, and K. K. Moorthy, 2010: Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India. J. Geophys. Res., 115(D19), D19204, doi:10.1029/2009 JD013462.

    Article  Google Scholar 

  • Ram, K., M. M. Sarin, and S. N. Tripathi, 2010: A 1year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability. J. Geophys. Res., 115(D24), D24313, doi: 10.1029/2010JD014188.

    Article  Google Scholar 

  • Ram, K., and M. M. Sarin, 2015: Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: Impact of anthropogenic sources. Journal of Environmental Management, 148, 153–163, doi: 10.1016/j.jenvman.2014.08.015.

    Article  Google Scholar 

  • Ramachandran, S., and T. A. Rajesh, 2007: Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: Comparison with urban sites in Asia, Europe, Canada, and the United States. J. Geophys. Res., 112(D6), D06211, doi: 10.1029/2006JD007488.

    Article  Google Scholar 

  • Rehman, I. H., T. Ahmed, P. S. Praveen, A. Kar, and V. Ramanathan, 2011: Black carbon emissions from biomass and fossil fuels in rural India. Atmospheric Chemistry Physics, 11, 7289–7299, doi: 10.5194/acp-11-7289-2011.

    Article  Google Scholar 

  • Safai, P. D., S. Kewat, P.S. Praveen, P. S. P. Rao, G. A. Momin, K. Ali, and P. C. S. Devara, 2007: Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmospheric Environment, 41, 2699–2709, doi: 10.1016/j.atmosenv.2006.11.044.

    Article  Google Scholar 

  • Saha, A., and S. Despiau, 2009: Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92, 27–41, doi:10.1016/j.atmosres.2008.07.007.

    Article  Google Scholar 

  • Satheesh, S. K., K. K. Moorthy, S. S. Babu, V. Vinoj, and C. B. S. Dutt, 2008: Climate implications of large warming by elevated aerosol over India. Geophysical Research Letter, 35, L19809, doi: 10.1029/2008GL034944.

  • Sharma, S., J. R. Brook, H. Cachier, J. Chow, A. Gaudenzi, and G. Lu, 2002: Light absorption and thermal measurements of black carbon in different regions of Canada. J. Geophys. Res., 107(D24), AAC 11-1–AAC11-11, doi: 10.1029/2002JD002496.

  • Srivastava, A. K., S. Tiwari, P. C. S. Devara, D. S. Bisht, M. K. Srivastava, S. N. Tripathi, P. Goloub, and B. N. Holben, 2011: Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: Implications to climatic impact. Annales Geophysicae, 29, 789–804, doi: 10.5194/angeo-29-789-2011.

    Article  Google Scholar 

  • Srivastava, A. K., S. Singh, P. Pant, and U. C. Dumka, 2012: Characteristics of black carbon over Delhi and Manora Peak—A comparative study. Atmospheric Science Letter, 13, 223–230, doi: 10.1002/asl.386.

    Article  Google Scholar 

  • Tiwari, S., and A. K. Singh, 2013: Variability of aerosol parameters derived from ground and satellite measurements over Varanasi located in the Indo-Gangetic Basin. Aerosol and Air Quality Research, 13, 627–638.

    Article  Google Scholar 

  • Tiwari, S., A. K. Srivastava, D. S. Bisht, P. Parmita, M. K. Srivastva, and S. D. Attri, 2013: Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125–126, 50–62, doi: 10.1016/j.atmosres.2013.01.011.

    Article  Google Scholar 

  • Tiwari, S., A. S. Pipal, A. K. Srivastava, D. S. Bisht, and G. Pand ithurai, 2015: Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique. Environmental Science and Pollution Research, 22(4), 2846–2855, doi: 10.1007/s11356-014-3531- 2.

    Article  Google Scholar 

  • Vadrevu, K. P., E. Ellicott, L. Giglio, K.V.S. Badarinath, E. Vermote, C. Justice, and W. K. M. Lau, 2012: Vegetation fires in the Himalayan Region-Aerosol load, black carbon emissions and smoke plume heights. Atmospheric Environment, 47, 241–251, doi: 10.1016/j.atmosenv.2011.11.009.

    Article  Google Scholar 

  • Vaishya, A., P. Singh, S. Rastogi, and S. S. Babu, 2017: Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment. Atmospheric Research, 185, 13–21, doi: 10.1016/j.atmosres. 2016.10.001.

    Article  Google Scholar 

  • Venkataraman, C., G. Habib, A. L. Eiguren-Fernandez, A. H. Miguel, and S. K. Friendland en, 2005: Residential biofuels in South Asia: Carbonaceous aerosol emissions and climate impacts. Science, 307, 1454–1456, doi: 10.1126/science.1104359.

    Article  Google Scholar 

  • Virkkula, A., T. Mäkelä, R. Hillamo, T. Yli-Tuomi, A. Hirsikko, K. Hämeri, and I. K. Koponen, 2007: A simple procedure for correcting loading effects of aethalometer data. Journal of the Air & Waste Management Association, 57, 1214–1222, doi: 10.3155/1047-3289.57.10.1214.

    Article  Google Scholar 

  • Wang, Y. G., P. K. Hopke, O. V. Rattigan, and Y. F. Zhu, 2011: Characterization of ambient black carbon and wood burning particles in two urban areas. Journal of Environmental Monitoring, 13, 1919–1926, doi: 10.1039/C1EM10117J.

    Article  Google Scholar 

  • Wolff, G. T., 1981: Particulate elemental carbon in the atmosphere. Journal of the Air Pollution Control Association, 31, 935–938, doi: 10.1080/00022470.1981.10465298.

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out as a part of the Aerosol Radiative Forcing over India project of the Indian Space Research Organization’s Geosphere Biosphere Programme. We are grateful to Dr. B. B. RAO, Principal, Technical College, and Prof. Sahab DAS, Head, Department of Chemistry, Deemed University, Dayalbagh, for their kind support and encouragement. Sampling assistance from Mr. Hazur SARAN is highly appreciated. Prof. C.P. NIGAM is gratefully acknowledged for reading throughout the manuscript. Finally, we wish to acknowledge Google Maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Singh, S.P., Jangid, A. et al. Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence. Adv. Atmos. Sci. 34, 1082–1094 (2017). https://doi.org/10.1007/s00376-017-6234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6234-z

Key words

关键词

Navigation