Skip to main content
Log in

Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure–amplitude–location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

摘要

本文基于实时雷达观测资料, 对流参数以及实时降水分析等多源数据,采用多元线性回归建立了降水外推预报的后验统计外推方法,并应用于综合分析集成临近预报系统(INCA)在阿尔卑斯山东部夏季逐小时降水外推预报,本文设计了包括偏差及分布误差在内的两步订正方法,以修正系统性回归误差,并使线性回归后的预报值概率密度分布更加接近实际的观测分布. 另外,本文对多元线性回归模型进行了交叉验证并对各项主要因子的重要性进行了讨论.采用结构-强度-位置(SAL)检验方法对2014年7月的统计外推降水预报效果进行评估后看出,统计外推预报有效地修正了传统外推易于报出过量降水的缺陷,但也易于形成较多分散小尺度降水而导致位置评分略有下降;通过个例分析可以发现,统计外推方法在局地热力对流的初始阶段能够更好地捕捉到对流单体的发展;而对线状组织对流系统,统计外推方法较原始外推预报有效地提升了降水强度预报性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, G. L., and A. Bellon, 1974: The use of digital weather radar records for short-term precipitation forecasting. Quart. J. Roy. Meteor. Soc., 100, 658–664.

    Article  Google Scholar 

  • Browning, K. A., and C. G. Collier, 1989: Nowcasting of precipitation systems. Rev. Geophys., 27, 345–370.

    Article  Google Scholar 

  • Fox, N. I., and J. W. Wilson, 2005: Very short period quantitative precipitation forecasting. Atmos. Sci. Lett., 6, 7–11, doi: 10.1002/asl.83.

    Article  Google Scholar 

  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211.

    Article  Google Scholar 

  • Golding, B.W., 1998: Nimrod: A system for generating automated very short range forecasts. Meteorological Applications, 5, 1–16.

    Article  Google Scholar 

  • Greene, D. R., and R. A. Clark, 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev, 100, 548–552.

    Article  Google Scholar 

  • Haiden, T., and G. Pistotnik, 2009: Intensity-dependent parameterization of elevation effects in precipitation analysis. Advances in Geosciences, 20, 33–38.

    Article  Google Scholar 

  • Haiden, T., A. Kann, C. Wittmann, G. Pistotnik, B. Bica, and C. Gruber, 2011: The integrated nowcasting through comprehensive analysis (INCA) system and its validation over the Eastern Alpine region. Wea. Forecasting, 26, 166–183.

    Article  Google Scholar 

  • Hwang, Y., A. J. Clark, V. Lakshmanan, and S. E. Koch, 2015: Improved nowcasts by blending extrapolation and model forecasts. Wea. Forecasting, 30, 1201–1217.

    Article  Google Scholar 

  • Kaltenboeck, R., 2012: New generation of dual polarized weather radars in Austria. Proc. 7th European Conf. on Radar in Meteorology and Hydrology, Météo France in Toulouse, France, 25th-29th June 2012. [Available online at http://www.meteo.fr/cic/meetings/2012/ERAD/extended abs/NET 166 ext abs. pdf]

    Google Scholar 

  • Kitzmiller, D. H., S. D. Vibert, and F. G. Samplatsky, 2001: Shortrange forecasts of rainfall amount from an extrapolativestatistical technique utilizing multiple remote sensor observations. Preprints Symposium on Precipitation Extremes, Albuquerque, Amer. Meteor. Soc., 266–270.

    Google Scholar 

  • Lin, C., S. Vasić, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32, L14801.

    Google Scholar 

  • Mandapaka, P. V., U. Germann, L. Panziera, and A. Hering, 2012: Can Lagrangian extrapolation of radar fields be used for precipitation nowcasting over complex Alpine orography? Wea. Forecasting, 27, 28–49.

    Article  Google Scholar 

  • Markatou, M., H. Tian, S. Biswas, and G. Hripcsak, 2005: Analysis of variance of cross-validation estimators of the generalization error. The Journal of Machine Learning Research, 6, 1127–1168.

    Google Scholar 

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • Pore, N. A., W. S. Richardson, and H. P. Perrotti, 1974: Forecasting extratropical storm surges for the northeast coast of the United States. NOAA Tech. Memorandum NWS TDL-50, 70 pp.

    Google Scholar 

  • Roberts, K. J., B. A. Colle, N. Georgas, and S. B. Munch, 2015: A regression-based approach for cool-season storm surge predictions along the New York-New Jersey coast. Journal of Applied Meteorology and Climatology, 54, 1773–1791, doi: 10.1175/JAMC-D-14-0314.1.

    Article  Google Scholar 

  • Seibert, P., A. Frank, and H. Formayer, 2007: Synoptic and regional patterns of heavy precipitation in Austria. Theor. Appl. Climatol., 87, 139–153, doi: 10.1007/s00704-006-0198-8.

    Article  Google Scholar 

  • Sokol, Z., and P. Pesice, 2012: Nowcasting of precipitation–advective statistical forecast model (SAM) for the Czech Republic. Atmospheric Research, 103, 70–79.

    Article  Google Scholar 

  • Sokol, Z., D. Kitzmiller, P. Pesice, and J. Mejsnar, 2013: Comparison of precipitation nowcasting by extrapolation and statistical-advection methods. Atmospheric Research, 123, 17–30.

    Article  Google Scholar 

  • Sun, J. Z., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: recent progress and challenges. Bull. Amer. Meteor. Soc, 95, 409–426, doi: 10.1175/BAMS-D-11-00263.1.

    Article  Google Scholar 

  • Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231–248.

    Article  Google Scholar 

  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL-a novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev, 136, 4470–4487.

    Article  Google Scholar 

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed., Academic Press. 704pp.

    Google Scholar 

  • Wilson, J. W., 2003: Thunderstorm nowcasting: Past, present and future. 31st Conference on Radar Meteorology, American Meteorological Society, 7–12 Aug 2003. https://ams.confex.com/ams/32BC31R5C/webprogram/Paper64215.html)

    Google Scholar 

  • Wilson, J.W., N. A. Crook, C. K. Mueller, J. Z. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 2079–2099, doi: 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    Article  Google Scholar 

  • Wilson, J.W., Y. R. Feng, M. Chen, and R. D. Roberts, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems.Wea. Forecasting, 25, 1691–1714.

    Article  Google Scholar 

  • Yaqub, A., P. Seibert, and H. Formayer, 2011: Diurnal precipitation cycle in Austria. Theor. Appl. Climatol., 103, 109–118, doi: 10.1007/s00704-010-0281-z.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Beijing Science & Technology Commission (Grant No. Z151100002115012). Comments from the two anonymous reviewers were very helpful for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Bica, B., Tüchler, L. et al. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps. Adv. Atmos. Sci. 34, 925–938 (2017). https://doi.org/10.1007/s00376-017-6185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6185-4

Key words

关键词

Navigation