Skip to main content
Log in

Ensemble mean forecast skill and applications with the T213 ensemble prediction system

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems (EPSs) and different cases, theoretical analysis regarding ensemble mean forecast skill has rarely been investigated, especially quantitative analysis without any assumptions of ensemble members. This paper investigates fundamental questions about the ensemble mean, such as the advantage of the ensemble mean over individual members, the potential skill of the ensemble mean, and the skill gain of the ensemble mean with increasing ensemble size. The average error coefficient between each pair of ensemble members is the most important factor in ensemble mean forecast skill, which determines the mean-square error of ensemble mean forecasts and the skill gain with increasing ensemble size. More members are useful if the errors of the members have lower correlations with each other, and vice versa. The theoretical investigation in this study is verified by application with the T213 EPS. A typical EPS has an average error coefficient of between 0.5 and 0.8; the 15-member T213 EPS used here reaches a saturation degree of 95% (i.e., maximum 5% skill gain by adding new members with similar skill to the existing members) for 1–10-day lead time predictions, as far as the mean-square error is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohn, T. J., M. Y. Sonessa, and D. P. Lettenmaier, 2010: Seasonal hydrologic forecasting: Do multimodel ensemble averages always yield improvements in forecast skill? J. Hydrometeorol., 11(6), 1358–1372.

    Article  Google Scholar 

  • Bougeault, P., and Coauthors, 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 1059–1072.

    Article  Google Scholar 

  • Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on ensemble prediction. Mon. Wea. Rev., 126, 2503–2518.

    Article  Google Scholar 

  • Chen, Q. Y., M. M. Yao, and Y. Wang, 2004: A new generation of operational medium-range weather forecast model T213L31 in National Meteorological Center. Meteorological Monthly, 30(10), 16–21. (in Chinese)

    Google Scholar 

  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 1410–1418.

    Article  Google Scholar 

  • Deque, M., 1997: Ensemble size for numerical seasonal forecasts. Tellus A, 49, 74–86.

    Article  Google Scholar 

  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 2427–2459.

    Article  Google Scholar 

  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759.

    Article  Google Scholar 

  • Fritsch, J. M., J. Hilliker, J. Ross, and R. L. Vislocky, 2000: Model consensus. Wea. Forecasting, 15, 571–582.

    Article  Google Scholar 

  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A, 57(3), 219–233.

    Google Scholar 

  • Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 1814–1827.

    Article  Google Scholar 

  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 2620–2632.

    Google Scholar 

  • Hashino, T., A. A. Bradley, and S. S. Schwartz, 2007: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Sciences, 11(2), 939–950.

    Article  Google Scholar 

  • Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123, 2181–2196.

    Article  Google Scholar 

  • Jeong, D., and Y. O. Kim, 2009: Combining single-value streamflow forecasts—A review and guidelines for selecting techniques. J. Hydrol., 377(3–4), 284–299.

    Article  Google Scholar 

  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285(5433), 1548–1550.

    Article  Google Scholar 

  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13(23), 4196–4216.

    Article  Google Scholar 

  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409–418.

    Article  Google Scholar 

  • Ma, J. H., Y. J. Zhu, R. Wobus, and P. X. Wang, 2012: An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci., 29, 782–794, doi: 10.1007/s00376-012-1249-y.

    Article  Google Scholar 

  • Najafi, M. R., and H. Moradkhani, 2016: Ensemble combination of seasonal streamflow forecasts. Journal of Hydrologic Engineering, 21(1), 04015043.

    Article  Google Scholar 

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133(5), 1155–1174.

    Article  Google Scholar 

  • Reifen, C., and R. Toumi, 2009: Climate projections: Past performance no guarantee of future skill? Geophys. Res. Lett., 36, L13704, doi: 10.1029/2009GL038082.

    Article  Google Scholar 

  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127, 2473–2489.

    Article  Google Scholar 

  • Sanders, F., 1963: On subjective probability forecasting. J. Appl. Meteor., 2, 191–201.

    Article  Google Scholar 

  • Su, X., H. L. Yuan, Y. J. Zhu, Y. Luo, and Y. Wang, 2014: Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008–2012. J. Geophys. Res. Atmos., 119, 7292–7310.

    Article  Google Scholar 

  • Vislocky, R. L., and J. M. Fritsch, 1995: Improved model output statistics forecasts through model consensus. Bull. Amer. Meteor. Soc., 76(7), 1157–1164.

    Article  Google Scholar 

  • Vrugt, J. A., M. P. Clark, C. G. H. Diks, Q. Y. Duan, and B. A. Robinson, 2006: Multi-objective calibration of forecast ensembles using Bayesian model averaging. Geophys. Res. Lett., 33(19), L19817, doi: 10.1029/2006GL027126.

    Article  Google Scholar 

  • Wang, Y., H. Qian, J.-J. Song, and M.-Y. Jiao, 2008: Verification of the T213 global spectral model of China National Meteorology Center over the East-Asia area. J. Geophys. Res., 113, D10110, doi: 10.1029/2007JD008750.

    Article  Google Scholar 

  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134(630), 241–260.

    Article  Google Scholar 

  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions— Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi: 10.1029/2009GL040896.

    Article  Google Scholar 

  • Winter, C. L., and D. Nychka, 2010: Forecasting skill of model averages. Stochastic Environmental Research and Risk Assessment, 24(5), 633–638.

    Article  Google Scholar 

  • Yoo, J. H., and I. S. Kang, 2005: Theoretical examination of a multi-model composite for seasonal prediction. Geophys. Res. Lett., 32(18), L18707, doi: 10.1029/2005GL023513.

    Article  Google Scholar 

  • Yuan, H. L., X. G. Gao, S. L. Mullen, S. Sorooshian, J. Du, and H. M. H. Juang, 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 1287–1303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Y., Yuan, H. et al. Ensemble mean forecast skill and applications with the T213 ensemble prediction system. Adv. Atmos. Sci. 33, 1297–1305 (2016). https://doi.org/10.1007/s00376-016-6155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6155-2

Keywords

Navigation