Skip to main content
Log in

Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River–Huaihe River basins

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River–Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2–5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostou, E. N., C. A. Morales, and T. Dinku, 2001: The use of TRMM precipitation radar observations in determining ground radar calibration biases. J. Atmos. Oceanic Technol., 18(4), 616–628.

    Article  Google Scholar 

  • Bolen, S. M., and V. Chandrasekar, 2000: Quantitative cross validation of space-based and ground-based radar observations. J. Appl. Meteor., 39, 2071–2079.

    Article  Google Scholar 

  • Chen, G. T. J., and H. C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121(3), 726–733.

    Article  Google Scholar 

  • Cifelli, R., S. W. Nesbitt, S. A. Rutledge, W. A. Petersen, and S. Yuter, 2007: Radar characteristics of precipitation features in the EPIC and TEPPS regions of the east Pacific. Mon. Wea. Rev., 135(4), 1576–1595.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597.

    Article  Google Scholar 

  • Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70(1B), 373–396.

    Article  Google Scholar 

  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89(1–4), 117–142.

    Google Scholar 

  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91(3), 257–272.

    Article  Google Scholar 

  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13(3), 860–869.

    Article  Google Scholar 

  • Heymsfield, G. M., B. Geerts, and L. Tian, 2000: TRMM precipitation radar reflectivity profiles as compared with highresolution airborne and ground-based radar measurements. J. Appl. Meteor., 39(12), 2080–2102.

    Article  Google Scholar 

  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95(5), 701–722.

    Article  Google Scholar 

  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78(10), 2179–2196.

    Article  Google Scholar 

  • Houze, R. A., M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70(6), 608–619.

    Article  Google Scholar 

  • Houze, R. A., S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43(8), 1114–1132.

    Article  Google Scholar 

  • Houze, R. A., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133(627), 1389–1411.

    Google Scholar 

  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39(12), 2038–2052.

    Article  Google Scholar 

  • Kawanishi, T., and Coauthors, 2000: TRMM precipitation radar. Advances in Space Research, 25(5), 969–972.

    Article  Google Scholar 

  • Kessinger, C., S. Ellis, J. V. Andel, J. Yee, and J. Hubbert, 2003: The AP clutter mitigation scheme for the WSR-88D. Preprints, 31st Conference on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 526–529.

  • Kozu, T., and T. Iguchi, 1999: Nonuniform beamfilling correction for spaceborne radar rainfall measurement: implications from TOGA COARE radar data analysis. J. Atmos. Oceanic Technol., 16(11), 1722–1735.

    Article  Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15(3), 809–817.

    Article  Google Scholar 

  • Langston, C., J. Zhang, and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776–790.

    Article  Google Scholar 

  • Liao, L., R. Meneghini, and T. Iguchi, 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18(12), 1959–1974.

    Article  Google Scholar 

  • Liu, L. P., Q. Xu, P. F. Zhang, and S. Liu, 2008: Automated detection of contaminated radar image pixels in mountain areas. Adv. Atmos. Sci., 25(5), 778–790, doi: 10.1007/s00376-008-0778-x.

    Article  Google Scholar 

  • Luo, Y. L., Y. J. Wang, H. Y. Wang, Y. J. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, doi: 10.1029/2010JD013873.

    Article  Google Scholar 

  • Luo, Y. L., W. M. Qian, R. H. Zhang, and D.-L. Zhang, 2013a: Gridded hourly precipitation analysis from high-density rain gauge network over the Yangtze-Huai Rivers Basin during the 2007 Mei-Yu season and comparison with CMORPH. J. Hydrometeor., 14(4), 1243–1258.

    Article  Google Scholar 

  • Luo, Y. L., H. Wang, R. H. Zhang, W. M. Qian, and Z. Z. Luo, 2013b: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River basin. J. Climate, 26(1), 110–132.

    Article  Google Scholar 

  • Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu Front in East China. Mon. Wea. Rev., 142(1), 203–221.

    Article  Google Scholar 

  • Meng, Z. Y., and Y. J. Zhang, 2012: On the squall lines preceding landfalling tropical cyclones in China. Mon. Wea. Rev., 140(2), 445–470.

    Article  Google Scholar 

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128(10), 3413–3436.

    Article  Google Scholar 

  • Schumacher, C., and R. A. Houze, 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39(12), 2151–2164.

    Article  Google Scholar 

  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133(4), 961–976.

    Article  Google Scholar 

  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21(1), 69–85.

    Google Scholar 

  • Simpson, J., C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the tropical rainfall measuring mission (TRMM). Meteor. Atmos. Phys., 60(1–3), 19–36.

  • Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34(9), 1978–2007.

    Article  Google Scholar 

  • Takahashi, N., H. Kuroiwa, and T. Kawanishi, 2003: Four-year result of external calibration for Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Transactions on Geoscience and Remote Sensing, 41(10), 2398–2403.

    Article  Google Scholar 

  • TRMM PR Team, 2011: Tropical Rainfall Measuring Mission (TRMM) precipitation radar algorithm Instruction Manual for Version 7. JAXA-NASA, 170 pp. [Available online at http://www.eorc.jaxa.jp/TRMM/documents/PR algorithm product information/pr manual/PR Instruction Manual V7 L1.pdf.]

  • Wang, H. Y., L. P. Liu, G. L. Wang, W. Zhuang, Z. Q. Zhang, and X. L. Chen, 2009: Development and application of the Doppler weather radar 3-D digital mosaic system. Journal of Applied Meteorological Science, 20(2), 241–224. (in Chinese)

    Google Scholar 

  • Wang, J. X., and D. B. Wolff, 2009: Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J. Atmos. Oceanic Technol., 26(5), 857–875.

    Article  Google Scholar 

  • Xu, W. X., E. J. Zipser, and C. T. Liu, 2009: Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137(12), 4261–4275.

    Google Scholar 

  • Zhang, D.-L., and K. Gao, 1989: Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117, 2067–2094.

    Google Scholar 

  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing threedimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic. Technol., 22, 30–42.

    Article  Google Scholar 

  • Zhao, S. X., L. S. Zhang, and J. H. Sun, 2007: Study of heavy rainfall and related mesoscale systems causing severe flood in Huaihe River basin during the summer of 2007. Climatic and Environmental Research, 12(6), 713–727. (in Chinese)

    Google Scholar 

  • Zhu, Y. Q., Z. H. Wang, N. Li, F. Xu, J. Han, Z. G. Chu, H. Y. Zhang, and P. C. Jiao, 2016: Consistency analysis and correction for observations from the radar at Nanjing. Acta Meteorologica Sinica, 74(2), 298–308. (in Chinese)

    Google Scholar 

  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?Mon. Wea. Rev., 122(8), 1751–1759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Qian, W., Gong, Y. et al. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River–Huaihe River basins. Adv. Atmos. Sci. 33, 1285–1296 (2016). https://doi.org/10.1007/s00376-016-6022-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6022-1

Keywords

Navigation