Skip to main content
Log in

Comparison of nonlinear local Lyapunov vectors with bred vectors, random perturbations and ensemble transform Kalman filter strategies in a barotropic model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram–Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more components in analysis errors than the BVs.

In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random perturbation (RP) technique, and the BV method, as well as its improved version—the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., and S. Anderson, 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758.

    Article  Google Scholar 

  • Barkmeijer, J., 1992. Local error growth in a barotropic model. Tellus A, 44, 314–323.

    Article  Google Scholar 

  • Benettin, G., L. Galgani, A. Giorgilli, and J. M. Strelcyn, 1980. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica, 15, 9–20.

    Article  Google Scholar 

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev., 129, 420–436.

    Article  Google Scholar 

  • Bowler, N. E., 2006. Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus A, 58, 538–548.

    Article  Google Scholar 

  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Z, Wei, and Y. J. Zhu, 2005. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 1076–1097.

    Article  Google Scholar 

  • Carrassi, A., A. Trevisan, and F. Uboldi, 2007: Adaptive observations and assimilation in the unstable subspace by breeding on the data assimilation system. Tellus A, 59(1), 101–113.

    Article  Google Scholar 

  • Cheung, K. K. W., and J. C. L. Chan, 1999. Ensemble forecasting of tropical cyclone motion using a barotropic model. Part I: perturbations of the environment. Mon. Wea. Rev., 127, 1229–1243.

    Article  Google Scholar 

  • Descamps, L., and O. Talagrand, 2007. On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev., 135, 3260–3272.

    Article  Google Scholar 

  • Ding, R. Q., and J. P. Li, 2007. Nonlinear finite-time Lyapunov exponent and predictability. Physics Letters A, 364, 396–400.

    Article  Google Scholar 

  • Ding, R. Q., J. P. Li, and K.-J. Ha, 2008: Trends and interdecadal changes of weather predictability during 1950s-1990s. J. Geophys. Res., 113, D24112, doi: 10.1029/2008JD010404.

    Article  Google Scholar 

  • Ding, R. Q., J. P. Li, and K.-H. Seo, 2010. Predictability of the Madden-Julian oscillation estimated using observational data. Mon. Wea. Rev., 138, 1004–1013.

    Article  Google Scholar 

  • Ding, R. Q., J. P. Li, and K.-H. Seo, 2011. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon. Wea. Rev., 139, 2421–2438.

    Article  Google Scholar 

  • Duan, W. S., and Z. H. Huo, 2016. An approach to generating mutually independent initial perturbations for ensemble forecasts: orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci., 73, 997–1014, doi: 10.1175/JAS-D-15-0138.1.

    Article  Google Scholar 

  • Durran, D. R., and M. Gingrich, 2014. Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 2476–2488.

    Article  Google Scholar 

  • Epstein, E. S., 1969. Stochastic dynamic prediction. Tellus, 21, 739–759.

    Article  Google Scholar 

  • Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.

    Article  Google Scholar 

  • Evensen, G., 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynamics, 54, 539–560.

    Article  Google Scholar 

  • Feng, J., R. Q. Ding, D. Q. Liu, and J. P. Li, 2014: The application of nonlinear local Lyapunov vectors to ensemble predictions in the Lorenz systems. J. Atmos. Sci., 71(9), 3554–3567.

    Article  Google Scholar 

  • Fraedrich, K., 1987. Estimating weather and climate predictability on attractors. J. Atmos. Sci., 44, 722–728.

    Article  Google Scholar 

  • Gaspari, G., and S. E. Cohn, 1999. Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123–137.

    Article  Google Scholar 

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 221 pp.

    Book  Google Scholar 

  • Lawrence, A. R., M. Leutbecher, and T. N. Palmer, 2009. The characteristics of Hessian singular vectors using an advanced data assimilation scheme. Quart. J. Roy. Meteor. Soc., 135, 1117–1132.

    Article  Google Scholar 

  • Leith, C. E., 1974. Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409–418.

    Article  Google Scholar 

  • Li, J. P., and J. F. Chou, 1997: Existence of the atmosphere attractor. Science in China Series D: Earth Sciences, 40(2), 215–220.

    Article  Google Scholar 

  • Li, J. P., and S. H. Wang, 2008. Some mathematical and numerical issues in geophysical fluid dynamics and climate dynamics. Communications in Computational Physics, 3, 759–793.

    Google Scholar 

  • Li, J. P., and R. Q. Ding, 2011. Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 3265–3283.

    Article  Google Scholar 

  • Li, J. P., and R. Q. Ding, 2013. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int. J. Climatol., 33, 1936–1947.

    Article  Google Scholar 

  • Li, J. P., R. Q. Ding, and B. H. Chen, 2006: Review and Prospect on the Predictability Study of the Atmosphere. Review and Prospects of the Developments of Atmosphere Sciences in Early 21st Century. China Meteorology Press, 96–104. (in Chinese)

    Google Scholar 

  • Lorenz, E. N., 1965. A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333.

    Article  Google Scholar 

  • Magnusson, L., E. Källén, and J. Nycander, 2008. Initial state perturbations in ensemble forecasting. Nonlinear Processes in Geophysics, 15, 751–759.

    Article  Google Scholar 

  • Magnusson, L., J. Nycander, and E. Källén, 2009: Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus A, 61(2), 194–209.

    Article  Google Scholar 

  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996. The new ECMWF ensemble prediction system: methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119.

    Article  Google Scholar 

  • Mu, M., and Z. Y. Zhang, 2006. Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J. Atmos. Sci., 63, 1587–1604.

    Article  Google Scholar 

  • Mu, M., and Z. N. Jiang, 2008. A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 53, 2062–2068.

    Google Scholar 

  • Murphy, A. H., 1973. A new vector partition of the probability score. J. Appl. Meteor., 12, 595–600.

    Article  Google Scholar 

  • Palatella, L., and A. Trevisan, 2015. Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter. Physical Review E, 91, 042905.

    Article  Google Scholar 

  • Peña, M., and Z. Toth, 2014: Estimation of analysis and forecast error variances. Tellus A, 66, 21767.

    Article  Google Scholar 

  • Stephenson, D. B., C. A. S. Coelho, and I. T. Jolliffe, 2008: Two extra components in the Brier Score decomposition. Mon. Wea. Rev., 23, 752–757.

    Google Scholar 

  • Toth, Z., and E. Kalnay, 1993. Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330.

    Article  Google Scholar 

  • Toth, Z., and E. Kalnay, 1997. Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319.

    Article  Google Scholar 

  • Trevisan, A., and R. Legnani, 1995. Transient error growth and local predictability: A study in the Lorenz system. Tellus A, 47, 103–117.

    Article  Google Scholar 

  • Trevisan, A., and F. Uboldi, 2004. Assimilation of standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system. J. Atmos. Sci., 61, 103–113.

    Article  Google Scholar 

  • Trevisan, A., and L. Palatella, 2011: Chaos and weather forecasting: the role of the unstable subspace in predictability and state estimation problems. International Journal of Bifurcation and Chaos, 21(12), 3389–3415.

    Article  Google Scholar 

  • Vannitsem, S., and C. Nicolis, 1997. Lyapunov vectors and error growth patterns in a T21L3 quasigeostrophic model. J. Atmos. Sci., 54, 347–361.

    Article  Google Scholar 

  • Wang, X., and C. H. Bishop, 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158.

    Article  Google Scholar 

  • Wei, M. Z., Z. Toth, R. Wobus, Y. J. Zhu, C. H. Bishop, and X. G. Wang, 2006. Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A, 58, 28–44.

    Article  Google Scholar 

  • Wei, M. Z., Z. Toth, R. Wobus, and Y. J. Zhu, 2008. Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A, 60, 62–79.

    Google Scholar 

  • Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985. Determining Lyapunov exponents from a time series. Physica D, 16, 285–317.

    Article  Google Scholar 

  • Yoden, S., and M. Nomura, 1993. Finite-time Lyapunov stability analysis and its application to atmospheric predictability. J. Atmos. Sci., 50, 1531–1543.

    Article  Google Scholar 

  • Zhang, J., W. S. Duan, and X. F. Zhi, 2015: Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Niño events. Science China Earth Sciences, 58(5), 685–696.

    Article  Google Scholar 

  • Ziehmann, C., L. A. Smith, and J. Kurths, 2000. Localized Lyapunov exponents and the prediction of predictability. Physics Letters A, 271, 237–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Ding, R., Li, J. et al. Comparison of nonlinear local Lyapunov vectors with bred vectors, random perturbations and ensemble transform Kalman filter strategies in a barotropic model. Adv. Atmos. Sci. 33, 1036–1046 (2016). https://doi.org/10.1007/s00376-016-6003-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6003-4

Key words

Navigation