Skip to main content
Log in

Possible sources of forecast errors generated by the global/regional assimilation and prediction system for landfalling tropical cyclones. Part I: Initial uncertainties

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfalling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions (“initials”, hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brennan, M. J., and S. J. Majumdar, 2011: An examination of model track forecast errors for Hurricane Ike (2008) in the Gulf of Mexico. Wea. Forecasting, 26, 848–867.

    Article  Google Scholar 

  • Chan, J. C. L., 2010: Movement of tropical cyclones. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. D. Kepert, Eds., World Science, Singapore, 133–148.

    Google Scholar 

  • Chen, L.S., 1965: Flow patterns in westerlies in relation to the East–Asia typhoon tracks. Acta Meteorologica Sinica (in Chinese), 35, 476–485.

    Google Scholar 

  • Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53, 3433–3445.

    Google Scholar 

  • Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023.

    Article  Google Scholar 

  • Ding Y.H., and E.R. Wright, 1983: The large scale circulation condition for the western Pacific typhoon genesi. Acta Oceanologica Sinica (in Chinese), 5, 561–574.

    Google Scholar 

  • Duan, W. S., and F. F. Zhou, 2013: Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A., 65, 18452, http://dx.doi.org/10.3402/tellusa.v65i0.18452.

    Article  Google Scholar 

  • Duan, W. S., and P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351–2367, doi: 10.1007/s00382-014-2369-0.

    Article  Google Scholar 

  • Fiorino, M., 2009: Record-setting performance of the ECMWF IFS in medium-range tropical cyclone track prediction. ECMWF Newsletter, 118, 20–27.

    Google Scholar 

  • Galarneau, T. J. Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405–430. ai]Galarneau, T. J. Jr., and T. M. Hamill, 2015: Diagnosis of track forecast errors for tropical cyclone Rita (2005) using GEFS reforecasts. Wea. Forecasting, 30, 1334–1354, doi: 10.1175/WAF-D-15-0036.1.

    Article  Google Scholar 

  • Green, B. W., and F. Q. Zhang, 2014: Sensitivity of tropical cyclone simulations to parametric uncertainties in air-sea fluxes and implications for parameter estimation. Mon. Wea. Rev., 142, 2290–2308.

    Article  Google Scholar 

  • Han, J., and H. L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520–533.

    Article  Google Scholar 

  • Heming, J., and J. Goerss, 2010: Track and structure forecasts of tropical cyclones. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. D. Kepert, Eds., World Science, Singapore, 287–323.

    Chapter  Google Scholar 

  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42, 129–151.

    Google Scholar 

  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • Huang, Y. Y., J. S. Xue, Q. L. Wan, Z. T. Chen, W. Y. Ding, and C. Z. Zhang, 2013: Improvement of the surface pressure operator in GRAPES and its application in precipitation forecasting in South China. Adv. Atmos. Sci., 30(2), 354–366, doi: 10.1007/s00376-012-1270-1.

    Article  Google Scholar 

  • Huang, B., D. H. Chen, X. L. Li, and C. Li, 2014: Improvement of the semi-Lagrangian advection scheme in the GRAPES model: Theoretical analysis and idealized tests. Adv. Atmos. Sci., 31(3), 693–704, doi: 10.1007/s00376-013-3086-z.

    Article  Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi: 10.1029/2008JD009944.

    Article  Google Scholar 

  • Kepert, J. D., 2011: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 1427–1445.

    Article  Google Scholar 

  • Liu, C. H., Z. M. Tan, and Y. Zhang, 2010: On the deviations of approximate model of forecasting errors growth. Journal of Nanjing University (Natural Sciences), 46, 607–615. (in Chinese)

    Google Scholar 

  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2006: Hurricane Juan (2003). Part II. Forecasting and numerical simulation. Mon. Wea. Rev., 134, 1748–1771.

    Article  Google Scholar 

  • Nicolis, C., R. A. P. Perdigao, and S. Vannitsem, 2009: Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci., 66, 766–778.

    Article  Google Scholar 

  • Orrell, D., 2003: Model error and predictability over different timescales in the Lorenz-96 systems. J. Atmos. Sci., 60, 2219–2228.

    Article  Google Scholar 

  • Orrell, D., L. Smith, J. Barkmeijer, and T. N. Palmer, 2001: Model error in weather forecasting. Nonlinear Processes in Geophysics, 8, 357–371.

    Article  Google Scholar 

  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395–419, doi. 10.1175/2008WAF2222128.1.

    Article  Google Scholar 

  • Roy, C., and R. Kovordanyi, 2012: Tropical cyclone track forecasting techniques-A review. Atmospheric Research, 104–105, 40–69.

    Article  Google Scholar 

  • Ryan, D. T., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132–152.

    Article  Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846, doi: 10.1126/science.1116448.

    Article  Google Scholar 

  • Xu, H., M. Mu, and D. H. Luo, 2004: Application of nonlinear optimization method to sensitivity analysis of numerical model. Progress in Natural Science, 14, 546–549.

    Article  Google Scholar 

  • Yamaguchi, M., and S. J. Majumdar, 2010: Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Wea. Rev., 138, 3634–3655.

    Article  Google Scholar 

  • Yamaguchi, M., T. Nakazawa, and K. Aonashi, 2012: Tropical cyclone track forecasts using JMA model with ECMWF and JMA initial conditions. Geophys. Res. Lett., 39, L09801.

    Article  Google Scholar 

  • Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301. doi: 10.1175/JTECH-D-12-00119.1

    Article  Google Scholar 

  • Yu, Y. S., M. Mu, and W. S. Duan, 2012: Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak-Cane model. J. Climate, 25, 1263–1277.

    Article  Google Scholar 

  • Zhang, R. H., and X. S. Shen, 2008: On the development of GRAPES-A new generation of the national operational NWP system in China. Chinese Science Bulletin, 53, 3429–3432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Yamaguchi, M. & Qin, X. Possible sources of forecast errors generated by the global/regional assimilation and prediction system for landfalling tropical cyclones. Part I: Initial uncertainties. Adv. Atmos. Sci. 33, 841–851 (2016). https://doi.org/10.1007/s00376-016-5238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5238-4

Key words

Navigation