Skip to main content
Log in

Sensitivity of tropical cyclone intensification to inner-core structure

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the dependence of tropical cyclone (TC) development on the inner-core structure of the parent vortex is examined using a pair of idealized numerical simulations. It is found that the radial profile of inner-core relative vorticity may have a great impact on its subsequent development. For a system with a larger inner-core relative vorticity/inertial stability, the conversion ratio of the diabatic heating to kinetic energy is greater. Furthermore, the behavior of the convective vorticity eddies is likely modulated by the system-scale circulation. For a parent vortex with a relatively higher inner-core vorticity and larger negative radial vorticity gradient, convective eddy formation and radially inward propagation is promoted through vorticity segregation. This provides a greater potential for these small-scale convective cells to self-organize into a mesoscale inner-core structure in the TC. In turn, convectively induced diabatic heating that is close to the center, along with higher inertial stability, efficiently enhances system-scale secondary circulation. This study provides a solid basis for further research into how the initial structure of a TC influences storm dynamics and thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Elsberry, R. L., 2005: Achievement of USWRP hurricane landfall research goal. Bull. Amer. Meteor. Soc., 86, doi: 10.1175/BAMS-86-5-643.

  • Fang, J., and F. Q. Zhang, 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103–122.

    Article  Google Scholar 

  • Ge, X. Y., T. Li, and M. S. Peng, 2013a: Tropical cyclone genesis efficiency: Mid-level versus bottom vortex. J. Trop. Meteor., 19, 197–213.

    Google Scholar 

  • Ge, X. Y., T. Li, and M. Peng, 2013b: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875.

    Article  Google Scholar 

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573.

    Article  Google Scholar 

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232.

    Article  Google Scholar 

  • Hendricks, E. A., M. S. Peng, X. Ge, and T. Li, 2011: Performance of a dynamic initialization scheme in the coupled ocean-atmosphere mesoscale prediction system for tropical cyclones (COAMPS-TC). Wea. Forecasting, 26, 650–663.

    Article  Google Scholar 

  • Houze Jr., R. A., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778–2800.

    Article  Google Scholar 

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor. Sci., 15, 91–97.

    Article  Google Scholar 

  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369–402.

    Article  Google Scholar 

  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.

    Article  Google Scholar 

  • Leslie, L. M. and G. J. Holland, 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101–110.

    Article  Google Scholar 

  • Li, T., X. Y. Ge, M. Peng, and W. Wang, 2012: Dependence of tropical cyclone intensification on the Coriolis parameter. Tropical Cyclone Research and Review, 1, 242–253.

    Google Scholar 

  • Liang, J., L. G. Wu, and H. J. Zhong, 2014: Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres. Adv. Atmos. Sci., 31, 305–315, doi: 10.1007/s00376-013-2282-1.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Rarley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Liu, Q., S. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and T. Marchok, 2006: Hurricane relocation in global ensemble forecast system. Preprints, 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P5. 13.

    Google Scholar 

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386.

    Article  Google Scholar 

  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241–266.

    Google Scholar 

  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int., 4, 187–198.

    Google Scholar 

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369–370.

    Google Scholar 

  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991.

    Article  Google Scholar 

  • Schecter, D. A., and D. H. E. Dubin, 1999: Vortex motion driven by a background vorticity gradient. Phys. Rev. Lett., 83, 2191–2194.

    Article  Google Scholar 

  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.

    Article  Google Scholar 

  • Smith, R. K, and M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 1385–1395.

    Article  Google Scholar 

  • Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63, 3077–3090.

    Article  Google Scholar 

  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563–582.

    Article  Google Scholar 

  • Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteor. Atmos. Phys., 99, 1–16.

    Article  Google Scholar 

  • Willoughby, H. E., 2009: Diabatically induced secondary flows in tropical cyclones. Part II: Periodic forcing. Mon. Wea. Rev., 137, 822–835.

    Article  Google Scholar 

  • Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543–549.

    Article  Google Scholar 

  • Wu, C.-C., K.-H. Chou, Y. Q. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on fourdimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.

    Article  Google Scholar 

  • Wu, L. G., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208–2221.

    Article  Google Scholar 

  • Xiao, Q. N., X. L. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252–2269.

    Article  Google Scholar 

  • Xu, J., and Y. Q. Wang, 2010: Sensitivity of tropical cyclone innercore size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831–1852.

    Article  Google Scholar 

  • Zhang, F. Q., Y. H. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophy. Res. Lett., 38, L15810, doi: 10.1029/2011GL048469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, X., Xu, W. & Zhou, S. Sensitivity of tropical cyclone intensification to inner-core structure. Adv. Atmos. Sci. 32, 1407–1418 (2015). https://doi.org/10.1007/s00376-015-4286-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4286-5

Key words

Navigation