Skip to main content
Log in

Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC CSM1.1(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model’s forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts.

Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Ni˜no3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and El Ni˜no–Southern Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achuthavarier, D., and V. Krishnamurthy, 2010: Relation between intraseasonal and interannual variability of the South Asian monsoon in the national Centers for environmental predictions forecast systems. J. Geophys. Res., 115, D08104, doi: 10.1029/2009JD012865.

    Article  Google Scholar 

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–108.

  • Ding, Y. H., and Coauthors, 2004: Advance in seasonal dynamicalprediction operation in China. Acta Meteorologica Sinica, 62, 598–612. (in Chinese)

    Google Scholar 

  • Drbohlav, H. K. L., and V. Krishnamurthy, 2010: Spatial structure, forecast errors, and predictability of the South Asian monsoon in CFS monthly retrospective forecasts. J. Climate, 23, 4750–4769.

    Article  Google Scholar 

  • Du, Y., S. P. Xie, Y. L. Yang, X. T. Zheng, L. Liu, and G. Huang, 2013: Indian ocean variability in the CMIP5 multimodel ensemble: The basin mode. J. Climate, 26, 7240–7266.

    Article  Google Scholar 

  • Fu, X. H., B. Wang, Q. Bao, P. Liu, and J. Y. Lee, 2009: Impacts of initial conditions on monsoon intraseasonal forecasting. Geophys. Res. Lett., 36, L08801, doi: 10.1029/2009GL037166.

    Article  Google Scholar 

  • Goswami, B. N., V. Krishnamurthy, and H. Annmalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611–633.

    Article  Google Scholar 

  • Jiang, X. W., S. Yang, Y. Q. Li, A. Kumar, X. W. Liu, Z. Y. Zuo, and B. Jha, 2013: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System Version 2. J. Climate, 26, 3708–3727.

    Article  Google Scholar 

  • Joseph, S., A. K. Sahai, and B. N. Goswami, 2010: Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models. Climate Dyn., 35, 651–667.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Kang, I. S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383–395.

    Article  Google Scholar 

  • Kim, H. M., P. J. Webster, J. A. Curry, and V. E. Toma, 2012: Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 2975–2991.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Krishnamurti, T. N., A. K. Mitra, T. S. V. V. Kumar,W. T. Yun, and W. K. Dewar, 2006: Seasonal climate forecasts of the South Asian monsoon using multiple coupled models. Tellus A, 58, 487–507.

    Google Scholar 

  • Kug, J. S., I. S. Kang, and D. H. Choi, 2008: Seasonal climate predictability with tier-one and tier-two prediction systems. Climate Dyn., 31, 403–416.

    Article  Google Scholar 

  • Kumar, A., Q. Zhang, J. K. E. Schemm, M. L’Heureux, and K. H. Seo, 2008: An assessment of errors in the simulation of atmospheric interannual variability in uncoupled AGCM simulations. J. Climate, 21, 2204–2217.

    Article  Google Scholar 

  • Kumar, V., and T. N. Krishnamurti, 2012: Improved seasonal precipitation forecasts for the Asian monsoon using 16 atmosphere-ocean coupled models. Part I: climatology. J. Climate, 25, 39–64.

    Google Scholar 

  • Lang, X. M., H. J. Wang, and D. B. Jiang, 2004: Extraseasonal short-term predictions of summer climate with IAP9LAGCM. Chinese Journal of Geophysics, 47, 22–28. (in Chinese)

    Article  Google Scholar 

  • Lee, J. Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle?. Climate Dyn., 35, 267–283.

    Article  Google Scholar 

  • Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329–346.

    Article  Google Scholar 

  • Li, W. J., and Coauthors, 2005: Research and operational application of dynamical climate model prediction system. Journal of Applied Meteorological Science, 16, 1–11. (in Chinese)

    Google Scholar 

  • Liu, X. W., S. Yang, A. Kumar, S. Weaver, and X. W. Jiang, 2013: Diagnostics of subseasonal prediction biases of the Asian summer monsoon by the NCEP climate forecast system. Climate Dyn., 41, 1453–1474.

    Article  Google Scholar 

  • Liu, X. W., S. Yang, Q. P. Li, A. Kumar, S. Weaver, and S. Liu, 2014a: Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 1487–1508.

    Article  Google Scholar 

  • Liu, X. W., and Coauthors, 2014b: Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon hindcasted by BCC CSM1. 1(m). Adv. Atmos. Sci., 31, 1051–1064, doi: 10.1007/s00376-014-3192-6.

    Article  Google Scholar 

  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505–513.

    Article  Google Scholar 

  • Ma, J. H., and H. J. Wang, 2014: Design and testing of a global climate prediction system based on a coupled climate model. Science China Earth Sciences, 57, 2417–2427, doi: 10.1007/s11430-014-4875-7.

    Article  Google Scholar 

  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853–872.

    Article  Google Scholar 

  • Pope, V. D., and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211–236.

    Article  Google Scholar 

  • Rajeevan, M., C. K. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Climate Dyn., 38, 2257–2274.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell1, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Saji, N. H., S. P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 4397–4417.

    Article  Google Scholar 

  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282, 728–731.

    Article  Google Scholar 

  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

    Article  Google Scholar 

  • Wang, B., I. S. Kang, and J. Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803–818.

    Article  Google Scholar 

  • Wang, B., Q. H. Ding, X. H. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi: 10.1029/2005GL022734.

    Article  Google Scholar 

  • Wang, B., and Coauthors, 2008: How accurately do coupled climate models predict the leading modes of Asian-Australianmonsoon interannual variability? Climate Dyn., 30, 605–619.

    Article  Google Scholar 

  • Wang, H. J., 1997: A preliminary study on the uncertainty of short-term climate prediction. Climatic and Environmental Research, 2, 333–338. (in Chinese)

    Google Scholar 

  • Wang, H. J., and Coauthors, 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32(2), 149–168, doi: 10.1007/s00376-014-0016-7.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.

    Article  Google Scholar 

  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi: 10.1029/2009GL040896.

    Article  Google Scholar 

  • Wen, M., S. Yang, A. Vintzileos, W. Higgins, and R. H. Zhang, 2012: Impacts of model resolutions and initial conditions on predictions of the Asian summer monsoon by the NCEP Climate Forecast System. Wea. Forecasting, 27, 629–646.

    Article  Google Scholar 

  • Wu, R. G., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155–170.

    Article  Google Scholar 

  • Wu, T. W., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147.

    Article  Google Scholar 

  • Wu, T. W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J. Geophys. Res., 118, 4326–4347, doi: 10.1002/jgrd.50320.

    Google Scholar 

  • Yang, S., Z. Q. Zhang, V. E. Kousky, R. W. Higgins, S. H. Yoo, J. Y. Liang, and Y. Fan, 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system. J. Climate, 21, 3755–3775.

    Article  Google Scholar 

  • Yang, S., M. Wen, R. Q. Yang, W. Higgins, and R. H. Zhang, 2011: Impacts of land process on the onset and evolution of Asian summer monsoon in the NCEP Climate forecast system. Adv. Atmos. Sci., 28, 1301–1317, doi: 10.1007/s00376-011-0167-8.

    Article  Google Scholar 

  • Zeng, Q. C., C. G. Yuan, W. Q. Wang, and R. H. Zhang, 1990: Experiments in numerical extraseasonal prediction of climate anomalies. Chinese J. Atmos. Sci., 14, 10–25. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., and Coauthors, 1997: Seasonal and Extraseasonal predictions of summer monsoon precipitation by GCMs. Adv. Atmos. Sci., 14, 163–176, doi: 10.1007/s00376-997-0017-x.

    Article  Google Scholar 

  • Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou, 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604, doi: 10.1029/2006GL026994.

    Article  Google Scholar 

  • Zheng, F., J. Zhu, H. Wang, and R. H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26, 359–372, doi: 10.1007/s00376-009-0359-7.

    Article  Google Scholar 

  • Zhou, G. Q., and Q. C. Zeng, 2001: Predictions of ENSO with a coupled atmosphere-ocean general circulation model. Adv. Atmos. Sci., 18, 587–603, doi: 10.1007/s00376-001-0047-8.

    Article  Google Scholar 

  • Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 1159–1173.

    Article  Google Scholar 

  • Zhu, J. S., and J. Shukla, 2013: The role of air-sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J. Climate, 26, 5689–5697.

    Article  Google Scholar 

  • Zhu, J. S., G. Q. Zhou, R. H. Zhang, and Z. B. Sun, 2013: Improving ENSO prediction in a hybrid coupled model with an embedded entrainment temperature parameterisation. Int. J. Climatol., 33, 343–355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, T., Yang, S. et al. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m). Adv. Atmos. Sci. 32, 1156–1172 (2015). https://doi.org/10.1007/s00376-015-4194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4194-8

Key words

Navigation