Skip to main content
Log in

Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The mid-Pliocene warm period was the most recent geological period in Earth’s history that featured long-term warming. Both geological evidence and model results indicate that East Asian summer winds (EASWs) strengthened in monsoonal China, and that East Asian winter winds (EAWWs) weakened in northern monsoonal China during this period, as compared to the pre-industrial period. However, the corresponding mechanisms are still unclear. In this paper, the results of a set of numerical simulations are reported to analyze the effects of changed boundary conditions on the mid-Pliocene East Asian monsoon climate, based on PRISM3 (Pliocene Research Interpretation and Synoptic Mapping) palaeoenvironmental reconstruction. The model results showed that the combined changes of sea surface temperatures, atmospheric CO2 concentration, and ice sheet extent were necessary to generate an overall warm climate on a large scale, and that these factors exerted the greatest effects on the strengthening of EASWs in monsoonal China. The orographic change produced significant local warming and had the greatest effect on the weakening of EAWWs in northern monsoonal China in the mid-Pliocene. Thus, these two factors both had important but different effects on the monsoon change. In comparison, the effects of vegetational change on the strengthened EASWs and weakened EAWWs were relatively weak. The changed monsoon winds can be explained by a reorganization of the meridional temperature gradient and zonal thermal contrast. Moreover, the effect of orbital parameters cannot be ignored. Results showed that changes in orbital parameters could have markedly affected the EASWs and EAWWs, and caused significant short-term oscillations in the mid-Pliocene monsoon climate in East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Z. S., J. E. Kutzbach, W. L. Prell, and S. C. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411, 62–66.

    Article  Google Scholar 

  • Chandler, M., D. Rind, and R. Thompson, 1994: Joint investigations of the middle Pliocene climate II: GISS GCM northern hemisphere results. Global and Planetary Change, 9, 197–219.

    Article  Google Scholar 

  • Ding, Z. L., S. L. Yang, J. M. Sun, and T. S. Liu, 2001: Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth and Planetary Science Letters, 185, 99–109.

    Article  Google Scholar 

  • Dolan, A. M., A. M. Haywood, D. J. Hill, H. J. Dowsett, S. J. Hunter, D. J. Lunt, and S. J. Pickering, 2011: Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol., 309, 98–110.

    Article  Google Scholar 

  • Dowsett, H. J., and M. M. Robinson, 2009: Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: A multiproxy perspective. Philos. Trans. Roy. Soc. A, 367, 109–125.

    Article  Google Scholar 

  • Dowsett, H. J., and Coauthors, 2010: The PRISM3D paleoenvironmental reconstruction. Stratigraphy, 7, 123–139.

    Google Scholar 

  • Dowsett, H. J., and Coauthors, 2013: Sea surface temperature of the mid-Piacenzian ocean: A data-model comparison. Scientific Reports, 3, doi:10.1038/srep02013.

  • Fang, X., Z. Zhao, J. Li, and M. Yan, 2005: Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implication for the northern Tibetan Plateau uplift. Science China Earth Sciences, 48, 1040–1051.

    Article  Google Scholar 

  • Ge, J. Y., and Coauthors, 2013: Major changes in East Asian climate in the mid-Pliocene: Triggered by the uplift of the Tibetan Plateau or global cooling?. Journal of Asian Earth Sciences, 69, 48–59.

    Article  Google Scholar 

  • Haywood, A. M., and P. J. Valdes, 2004: Modelling Pliocene warmth: Contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218, 363–377.

    Article  Google Scholar 

  • Haywood, A. M., and Coauthors, 2010: Pliocene Model Intercomparison Project (PlioMIP): Experimental design and boundary conditions (Experiment 1). Geoscientific Model Development, 3, 227–242.

    Article  Google Scholar 

  • Haywood, A. M., and Coauthors, 2013a: On the identification of a Pliocene time slice for data-model comparison. Philos. Trans. Roy. Soc. A, 371, doi: 10.1098/rsta.2012.0515.

  • Haywood, A. M., and Coauthors, 2013b: Large-scale features of Pliocene climate: Results from the Pliocene Model Intercomparison Project. Climate of the Past, 9, 191–209.

    Article  Google Scholar 

  • Jiang, D., 2013: Vegetation feedback at the mid-Pliocene. Atmospheric and Oceanic Science Letters, 6, 320–323.

    Google Scholar 

  • Jiang, D., H. J. Wang, Z. L. Ding, X. M. Lang, and H. Drange, 2005: Modeling the middle Pliocene climate with a global atmospheric general circulation model. J. Geophys. Res., 110, doi:10.1029/2004JD005639.

  • Jiang, H. C., and Z. L. Ding, 2010: Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess Plateau): Implications for Neogene evolution of the East Asian winter monsoon. Geological Society of America Bulletin, 122, 843–854.

    Article  Google Scholar 

  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, doi:10.1029/2011MS000045.

  • Li, J., X. Fang, C. Song, B. Pan, Y. Ma, and M. Yan, 2014: Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81, 400–423.

    Article  Google Scholar 

  • Lu, H., X. Wang, and L. Li, 2010: Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geological Society, London, Special Publications, 342, 29–44.

    Article  Google Scholar 

  • Lunt, D. J., A. M. Haywood, G. A. Schmidt, U. Salzmann, P. J. Valdes, H. J. Dowsett, and C. A. Loptson, 2012: On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 321–322, 128–138.

    Article  Google Scholar 

  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 5150–5168.

    Article  Google Scholar 

  • Salzmann, U., A. M. Haywood, D. J. Lunt, P. J. Valdes, and D. J. Hill, 2008: A new global biome reconstruction and data-model comparison for the middle Pliocene. Global Ecology and Biogeography, 17, 432–447.

    Article  Google Scholar 

  • Salzmann, U., and Coauthors, 2013: Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nature Climate Change, 3, 969–974.

    Article  Google Scholar 

  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levid, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 3993–4014.

    Article  Google Scholar 

  • Sloan, L. C., T. J. Crowley, and D. Pollard, 1996: Modeling of middle Pliocene climate with the NCAR GENESIS general circulation model. Marine Micropaleontology, 27, 51–61.

    Article  Google Scholar 

  • Sohl, L. E., M. A. Chandler, R. B. Schmunk, K. Mankoff, J. A. Jonas, K. M. Foley, and H. J. Dowsett, 2009: PRISM3/GISS topographic reconstruction. U.S. Geological Survey Data Series, No. 419, 6 pp.

    Google Scholar 

  • Sun, D. H., R. X. Su, J. Bloemendal, and H. Y. Lu, 2008: Grainsize and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 264, 39–53.

    Article  Google Scholar 

  • Sun, Y., G. Ramstein, C. Contoux, and T. J. Zhou, 2013: A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene). Climate of the Past, 9, 1613–1627.

    Article  Google Scholar 

  • Wan, S. M., A. C. Li, P. D. Clift, and J. B. W. Stuut, 2007: Development of the East Asian monsoon: Mineralogical and sedimentological records in the northern South China Sea since 20 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 561–582.

    Article  Google Scholar 

  • Willeit, M., A. Ganopolski, and G. Feulner, 2013: On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets. Climate of the Past, 9, 1749–1759.

    Article  Google Scholar 

  • Xiong, S. F., Z. L. Ding, and S. L. Yang, 2001: Abrupt shifts in the late Cenozoic environment of north-western China recorded in loess-palaeosol-red clay sequences. Terra Nova, 13, 376–381.

    Article  Google Scholar 

  • Yan, Q., Z. S. Zhang, H. J. Wang, D. Jiang, and W. P. Zheng, 2011: Simulation of sea surface temperature changes in the middle Pliocene warm period and comparison with reconstructions. Chinese Science Bulletin, 56, 890–899.

    Article  Google Scholar 

  • Yan, Q., Z. S. Zhang, and Y. Q. Gao, 2012: An East Asian monsoon in the mid-Pliocene. Atmospheric and Oceanic Science Letters, 5, 449–454.

    Google Scholar 

  • Zhang, P. Z., P. Molnar, and W. R. Downs, 2001: Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.

    Article  Google Scholar 

  • Zhang, R., and D. Jiang, 2014: Impact of vegetation feedback on the mid-Pliocene warm climate. Adv. Atmos. Sci., 31, 1407–1416, doi: 10.1007/s00376-014-4015-5.

    Article  Google Scholar 

  • Zhang, R., and Coauthors, 2013a: Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 9, 2085–2099.

    Article  Google Scholar 

  • Zhang, R., D. Jiang, Z. Zhang, and E. Yu, 2015: The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 417, 137–150.

    Article  Google Scholar 

  • Zhang, Z. S., and Coauthors, 2013b: Mid-Pliocene Atlantic meridional overturning circulation not unlike modern. Climate of the Past, 9, 1495–1504.

    Article  Google Scholar 

  • Zheng, H. B., C. M. Powell, and Z. S. An, 2000: Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715–718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Jiang, D. & Zhang, Z. Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Adv. Atmos. Sci. 32, 1016–1026 (2015). https://doi.org/10.1007/s00376-014-4183-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4183-3

Key words

Navigation