Skip to main content
Log in

Proof of the monotonicity of grid size and its application in grid-size selection for mesoscale models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Terrain characteristics can be accurately represented in spectrum space. Terrain spectra can quantitatively reflect the effect of topographic dynamic forcing on the atmosphere. In wavelength space, topographic spectral energy decreases with decreasing wavelength, in spite of several departures. This relationship is approximated by an exponential function. A power law relationship between the terrain height spectra and wavelength is fitted by the least-squares method, and the fitting slope is associated with grid-size selection for mesoscale models. The monotonicity of grid size is investigated, and it is strictly proved that grid size increases with increasing fitting exponent, indicating that the universal grid size is determined by the minimum fitting exponent. An example of landslide-prone areas in western Sichuan is given, and the universal grid spacing of 4.1 km is shown to be a requirement to resolve 90% of terrain height variance for mesoscale models, without resorting to the parameterization of subgrid-scale terrain variance. Comparison among results of different simulations shows that the simulations estimate the observed precipitation well when using a resolution of 4.1 km or finer. Although the main flow patterns are similar, finer grids produce more complex patterns that show divergence zones, convergence zones and vortices. Horizontal grid size significantly affects the vertical structure of the convective boundary layer. Stronger vertical wind components are simulated for finer grid resolutions. In particular, noticeable sinking airflows over mountains are captured for those model configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansoult, M. M., 1989: Circular sampling for fourier analysis of digital terrain data. Mathematical Geology, 21, 401–410, doi: 10.1007/BF00897325.

    Article  Google Scholar 

  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164–184, doi: 10.1175/1520-0469(1983)040<0164: LSTDTI>2.0.CO;2.

    Article  Google Scholar 

  • Booth, A. M., J. J. Roering, and J. T. Perron, 2009: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109, 132–147, doi: 10.1016/j.geomorph.2009.02.027.

    Article  Google Scholar 

  • Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213–243, doi: 10.1002/qj.49709540402.

    Article  Google Scholar 

  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the Discrete Cosine Transform (DCT). Mon. Wea. Rev., 130, 1812–1829, doi: 10.1175/1520-0493(2002)130<1812: SDOTDA>2.0.CO;2.

    Article  Google Scholar 

  • Goff, J. A., and B. E. Tucholke, 1997: Multiscale spectral analysis of bathymetry on the flank of the Mid-Atlantic Ridge: Modification of the seafloor by mass wasting and sedimentation. J. Geophys. Res., 102, 15 447–15 462, doi: 10.1029/97JB 00723.

    Article  Google Scholar 

  • Hanley, J. T., 1977: Fourier analysis of the Catawba Mountain knolls, Roanoke county, Virginia. Mathematical Geology, 9, 159–163, doi: 10.1007/BF02312510.

    Article  Google Scholar 

  • Hough, S. E., 1989: On the use of spectral methods for the determination of fractal dimension. Geophys. Res. Lett., 16, 673–676, doi: 10.1029/GL016i007p00673.

    Article  Google Scholar 

  • Hsu, H. M., M. W. Moncrieff, W. W. Tung, and C. H. Liu, 2006: Multiscale temporal variability of warm-season precipitation over North America: Statistical analysis of radar measurements. J. Atmos. Sci., 63, 2355–2368, doi: 10.1175/JAS3752.1.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.

    Article  Google Scholar 

  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931–952.

    Article  Google Scholar 

  • Perron, J. T., J. W. Kirchner, and W. E. Dietrich, 2008: Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J. Geophys. Res., 113, F04003, doi:10.1029/2007JF000866.

    Google Scholar 

  • Pielke, R. A., 1981: Mesoscale numerical modeling. Advances in Geophysics, B. Saltzman, Ed., Academic Press Inc., New York, 185–344.

    Google Scholar 

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, San Diego, 599 pp.

    Google Scholar 

  • Poulos, G. S., and R. A. Pielke, 1994: A numerical analysis of Los Angeles Basin pollution transport to the Grand Canyon under stably stratified, southwest flow conditions. Atmos. Environ., 28, 3329–3357.

    Article  Google Scholar 

  • Ramanathan, N., and K. Srinivasan, 1995: An estimation of optimum grid size for Kashmir Valley by spectral method. J. Appl. Meteor., 34(12), 2783–2786.

    Article  Google Scholar 

  • Rayner, J. N., 1972: The application of harmonic and spectral analysis to the study of terrain. Spatial Analysis in Geomorphology, R. J. Chorley, Ed., Methuen, New York, 283–302.

    Google Scholar 

  • Ricard, Y., C. Froidevaux, and R. Simpson, 1987: Spectral analysis of topography and gravity in the Basin and Range Province. Tectonophysics, 133, 175–179, 183–187, doi: 10.1016/0040-1951(87)90262-9.

    Article  Google Scholar 

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97.

    Article  Google Scholar 

  • Salvador, R., J. Calbó, and M. M. Millán, 1999: Horizontal grid size selection and its influence on mesoscale model simulations. J. Appl. Meteor., 38, 1311–1329, doi: 10.1175/1520-0450(1999)038<1311:HGSSAI>2.0.CO;2.

    Article  Google Scholar 

  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 3351–3372.

    Article  Google Scholar 

  • Srinivasan, K., and N. Ramanathan, 1994: Terrain variance spectra for Indian Western Ghats. Proceedings-Indian National Science Academy Part A, 60A, 133–138.

    Google Scholar 

  • Trenberth, K. E., and A. Solomon, 1993: Implications of global atmospheric spatial spectra for processing and displaying data. J. Climate, 6, 531–545, doi:10.1175/1520-0442(1993)006 <0531:IOGASS>2.0.CO;2.

    Article  Google Scholar 

  • Wang, W. T., and Y. Wang, 2004: A spectral analysis of satellite topographic profile: A coincident pattern between latitudinal topographic and westerly perturbation on the lee side of Qinghai-Tibet Plateau. Journal of Nanjing University, 40(3), 304–317. (in Chinese)

    Google Scholar 

  • Young, G. S., and R. A. Pielke, 1983: Application of terrain height variance spectra to mesoscale modeling. J. Atmos. Sci., 40, 2555–2560.

    Article  Google Scholar 

  • Young, G. S., R. A. Pielke, and R. C. Kessler, 1984: A comparison of the terrain height variance spectra of the Front Range with that of a hypothetical mountain. J. Atmos. Sci., 41(7), 1249–1252, doi: 10.1175/1520-0469(1984)041<1249:ACOTTH>2.0.CO;2.

    Article  Google Scholar 

  • Zhao, K., and M. Xue, 2009: Assimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane Ike (2008). Geophys. Res. Lett., 36, L12803, doi:10.1029/2009GL038658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Gao, S., Ran, L. et al. Proof of the monotonicity of grid size and its application in grid-size selection for mesoscale models. Adv. Atmos. Sci. 32, 1005–1015 (2015). https://doi.org/10.1007/s00376-014-4091-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4091-6

Key words

Navigation