Skip to main content
Log in

Simulation and causes of eastern Antarctica surface cooling related to ozone depletion during austral summer in FGOALS-s2

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Two parallel sets of numerical experiments (an ozone-hole simulation and a non-ozone-hole simulation) were performed to investigate the effect of ozone depletion on surface temperature change using the second spectral version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2), focusing on the eastern Antarctica (EA) continent in austral summer. First, we evaluated the ability of the model to simulate the EA surface cooling, and found the model can successfully reproduce the cooling trend of the EA surface, as well as the circulation change circling the South Pole in the past 30 years. Second, we compared the two experiments and discovered that the ozone depletion causes the cooling trend and strengthens the circumpolar westerly flow. We further investigated the causes of the EA surface cooling associated with the ozone hole and found two major contributors. The first is the ozone-hole direct radiation effect (DRE) upon the surface that happens because the decrease of the downward longwave (LW) radiation overcomes the increase of the downward shortwave (SW) radiation under clear sky. The second is the cloud radiation effect (CRE) induced by ozone depletion, which happens because the decreased downward SW radiation overcomes the increased downward LW radiation in the case of increased cloud. Although the CRE is theoretically opposite to the DRE, their final net effect makes comparable contributions to the EA surface cooling. Compared with the surface radiation budget, the surface heat flux budgets have a much smaller contribution. We additionally note that the CRE is basically ascribed to the circulation change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142. doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global oceanatmosphereland system model, spectral version 2: FGOALSs2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks of the southern annular mode in winter and summer. J. Atmos. Sci., 67, 2320–2330.

    Article  Google Scholar 

  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the community climate system model. 3rd version. NCAR Tech. Note, 70 pp.

    Google Scholar 

  • Cordero, E. C., and P. M. Forster, 2006: Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys., 6, 5369–5380.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137 553–597.

    Article  Google Scholar 

  • Fogt, R. L., J. Perlwitz, and A. J. Monaghan, 2009: Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 Models. J. Climate, 22, 5346–5365.

    Article  Google Scholar 

  • Forster, P.M. D., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 841–10 855.

    Article  Google Scholar 

  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern hemisphere climate change. Science, 302, 273–275.

    Article  Google Scholar 

  • Grise, K. M., and D. W. J. Thompson, 2009: On the role of radiative processes in stratosphere-troposphere coupling. J. Climate, 22, 4154–4161.

    Article  Google Scholar 

  • Hu, Y., Y. Xia, and X. Fu, 2011: Tropospheric temperature response to stratospheric ozone recovery in the 21st century. Atmos. Chem. Phy., 11, 7687–7699.

    Article  Google Scholar 

  • Kiehl, J. T., and P. R. Gent, 2004: The community climate system model, version 2. J. Climate, 17, 3666–3682.

    Article  Google Scholar 

  • Lal, M., A. K. Jain, and M. C. Sinha, 1987: Possible climatic implications of depletion of Antarctic ozone. Tellus, 38, 326–328.

    Article  Google Scholar 

  • Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2004: Manual for LASG/IAP Climate System Ocean Model (LICOM1. 0). Science Press, Beijing, 128 pp. (in Chinese)

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318–329, doi: 10.1007/s13351-012-0305-y.

    Article  Google Scholar 

  • Marshall G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate, 19, 5388–5404.

    Article  Google Scholar 

  • Marshall, G. J., D. B. Stefano, and S. S. Naik, 2011: Analysis of a regional change in the sign of the SAM-temperature relationship in Antarctica. Climate Dyn., 36, 277–287.

    Article  Google Scholar 

  • Monaghan, A. J., D. H. Bromwich, H. David, and W. Chapman, 2008: Recent variability and trends of Antarctic nearsurface temperature. J. Geophys. Res., 113, D04105, doi: 10.1029/2007JD009094.

    Google Scholar 

  • Polvani, L. M., W. W. Darryn, J. P. Gustavo, and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentiethcentury atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795–812.

    Article  Google Scholar 

  • Previdi, M., and L. M. Polvani, 2011: Comment on “Tropospheric temperature response to stratospheric ozone recovery in the 21st century” by Hu et al. (2011). Atmos. Chem. Phys., 12, 4893–4896.

    Article  Google Scholar 

  • Qu, X., A. Hall, and B. Julien, 2012: Why does the Antarctic Peninsula warm in climate simulations? Climate Dyn., 38, 913–927.

    Article  Google Scholar 

  • Ramanathan, V., and R. E. Dickinson, 1979: The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J. Atmos. Sci., 36, 1084–1104.

    Google Scholar 

  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71–122, doi: 10.1029/1999RG000065.

    Article  Google Scholar 

  • Randel, W. J., and F. Wu, 2007: A stratospheric ozone profile data set for 1979–2005: Variability, trend and comparison with column ozone data. J. Geophys. Res., 112, D06313 doi: 10.1029/2006JD007339.

    Google Scholar 

  • Screen, J. A., and I. Simmonds, 2012: Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions. J. Geophys. Res., D16108, doi: 10.1029/2012JD017885.

    Google Scholar 

  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, doi: 10.1029/2004GL020724.

    Article  Google Scholar 

  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275–316. doi: 10.1029/1999RG900008.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–899.

    Article  Google Scholar 

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 1018–1036.

    Article  Google Scholar 

  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741–749.

    Article  Google Scholar 

  • Wang, W.-C., Y. C. Zhuang, and R. D. Uojkov, 1993: Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the northern hemisphere Geophys. Res. Lett., 20, 1567–1570, doi: 10.1029/93GL01318.

    Article  Google Scholar 

  • World Meteorological Organization (WMO), 2007: Scientific assessment of ozone depletion, 2006. WMO Global Ozone Research and Monitoring Project Rep. No. 50, Geneva, 572 pp.

    Google Scholar 

  • Wood, R, B. Huebert, C. R. Mechoso, and R. Weller, 2007: The VAMOS Ocean-Cloud-Atmosphere-Land study. WCRP and Cosponsors Program Summary, 9 pp. [Available online at http://www.eol.ucar.edu/projects/vocals/documentation/vocalsoverview.pdf.]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Bao, Q., Ji, D. et al. Simulation and causes of eastern Antarctica surface cooling related to ozone depletion during austral summer in FGOALS-s2. Adv. Atmos. Sci. 31, 1147–1156 (2014). https://doi.org/10.1007/s00376-014-3144-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-3144-1

Key words

Navigation