Skip to main content
Log in

Precipitation pattern of the mid-Holocene simulated by a high-resolution regional climate model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Early proxy-based studies suggested that there potentially occurred a “southern drought/northern flood” (SDNF) over East China in the mid-Holocene (from roughly 7000 to 5000 years before present). In this study, we used both global and regional atmospheric circulation models to demonstrate that the SDNF—namely, the precipitation increases over North China and decreases over the the lower reaches of the Yangtze River Valley—could have taken place in the mid-Holocene. We found that the SDNF in the mid-Holocene was likely caused by the lower SST in the Pacific. The lowered SST and the higher air temperature over mainland China increased the land-sea thermal contrast and, as a result, strengthened the East Asian summer monsoon and enhanced the precipitation over North China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367.

    Article  Google Scholar 

  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximumpart 1: Experiments and large-scale features. Climate of the Past, 3, 261–277.

    Article  Google Scholar 

  • Brown, J., M. Collins, A. W. Tudhope, and T. Toniazzo, 2008: Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Climate Dyn., 30, 19–36.

    Article  Google Scholar 

  • Cai, Y. L., Z. Y. Chen, W. Zhang, Z. Y. Guo, and Y. Chen, 2001: Climate fluctuation of the western Shanghai District by correspondence analysis since 8.5 kaB.P. Journal of Lake Sciences, 13, 118–126. (in Chinese)

    Google Scholar 

  • Chang, C-P., Y. S. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4326–4340.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Chen, H. P., J. Q. Sun, and X. L. Chen, 2012: The projection and uncertainty analysis of summer precipitation in China and the variations of associated atmospheric circulation field. Climatic and Environmental Research, 17, 171–183. (in Chinese)

    Google Scholar 

  • Chen, X. L., T. J. Zhou, and L. W. Zou, 2013: Variation characteristics of the Asian-Pacific Oscillation in boreal summer as simulated by the LASG/IAP climate system model FGOALS gl. Acta Meteorologica Sinica, 71, 23–37 (in Chinese).

    Google Scholar 

  • Dallmeyer, A., and M. Claussen, 2011: The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate. Biogeosciences, 8, 1499–1519.

    Article  Google Scholar 

  • Diffenbaugh, N. S., and L. C. Sloan, 2004: Mid-Holocene orbital forcing of regional-scale climate: A case study of western North America using a high-resolution RCM. J. Climate, 17, 2927–2937.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol, 28, 1139–1161.

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Fu, J. J., S. L. Li, and D. H. Luo, 2009: Impact of global SST on decadal shift of East Asian summer climate. Adv. Atmos. Sci., 26, 192–201, doi: 10.1007/s00376-009-0192-z.

    Article  Google Scholar 

  • Gao, X. J., J. S. Pal, and F. Giorgi, 2006: Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett., 33, L03706, doi: 10.1029/2005GL024954.

    Google Scholar 

  • Gao, X. J., Y. Shi, and F. Giorgi, 2011: A high resolution simulation of climate change over China. Science China: Earth Sciences, 54, 462–472.

    Article  Google Scholar 

  • Ge, Q. S., X. Z. Zhang, and J. Y. Zheng, 2013: Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China. Int. J. Climatol., doi:10.1002/joc.3677. (in Press)

    Google Scholar 

  • Hargreaves, J. C., and J. D. Annan, 2009: On the importance of paleoclimate modelling for improving predictions of future climate change. Clim. Past, 5, 803–814.

    Article  Google Scholar 

  • Harrison, S. P., J. E. Kutzbach, Z. Liu, P. J. Bartlein, B. Otto-Bliesner, D. Muhs, I. C. Prentice, and R. S. Thompson, 2003: Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Climate Dyn., 20, 663–688.

    Google Scholar 

  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407–418.

    Article  Google Scholar 

  • He, S. P., 2013: Reduction of the East Asian winter monsoon interannual variability after the mid-1980s and possible cause. Chinese Science Bulletin, 58, 1331–1338.

    Article  Google Scholar 

  • Jiang, D. B., H. J. Wang, D. Helge, and X. M. Lang, 2003: Last glacial maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet, J. Geophys. Res., 108, 4102, doi: 10.1029/2002JD002167.

    Article  Google Scholar 

  • Jiang, D. B., X. M. Lang, Z. P. Tian, and T. Wang, 2012: Considerable model-data mismatch in temperature over China during the Mid-Holocene: Results of PMIP simulations. J. Climate, 25, 4135–4153.

    Article  Google Scholar 

  • Jiang, D. B., X. M. Lang, Z. P. Tian, and L. X. Ju, 2013: Mid-Holocene East Asian summer monsoon strengthening: Insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 422–429.

    Article  Google Scholar 

  • Jin, L. Y., H. J. Wang, F. H. Chen, and D. B. Jiang, 2006: A possible impact of cooling over the Tibetan Plateau on the mid-Holocene East Asian monsoon climate. Adv. Atmos. Sci., 23, 543–550, doi: 10.1007/s00376-006-0543-y.

    Article  Google Scholar 

  • Ju, L. X., and X. M. Lang, 2011: Hindcast experiment of extraseasonal short-term summer climate prediction over China with RegCM3 IAP9L-AGCM. Acta Meteorologica Sinica, 25, 376–385.

    Article  Google Scholar 

  • Ju, L. X., H. J. Wang, and D. B. Jiang, 2007: Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 376–390.

    Article  Google Scholar 

  • Knutti, R., and J. Sedlacek, 2012. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373, doi: 10.1038/NCLIMATE1716.

    Article  Google Scholar 

  • Kutzbach, J. E., and Z. Liu, 1997: Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science, 278, 440–443.

    Article  Google Scholar 

  • Lang, X. M., H. J. Wang, and D. B. Jiang, 2004: Extraseasonal short-term predictions of summer climate with IAP9LAGCM. Chinese Journal of Geophysics, 47, 19–24.

    Article  Google Scholar 

  • Liang, X. Z., 1996: Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci., 13, 269–298.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 1065–1092.

    Article  Google Scholar 

  • Liu, G., P. Zhao, and J. M. Chen, 2011: A 150-year reconstructed summer Asian-Pacific Oscillation index and its association with precipitation over eastern China. Theor. Appl. Clim., 103, 239–248.

    Article  Google Scholar 

  • Liu, Z, J. Kutzbach, and L. X. Wu, 2000: Modeling climate shift of El Nino variability in the Holocene. Geophys. Res. Lett., 27, 2265–2268.

    Article  Google Scholar 

  • Liu, Z., S. P. Harrison, J. Kutzbach, and B. Otto-Bliesner, 2004: Global monsoons in the mid-Holocene and oceanic feedback. Climate Dyn., 22, 157–182.

    Article  Google Scholar 

  • Luca, A. D., R. de Elia, and R. Laprise, 2013: Potential for small scale added value of RCM’s downscaled climate change signal. Climate Dyn., 40, 601–618.

    Article  Google Scholar 

  • Marzin, C., and P. Braconnot, 2009: The role of the ocean feedback on Asian and Africanmonsoon variations at 6 kyr and 9.5 kyr BP. Comptes Rendus Geoscience, 341, 643–655.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi: 10.1029/97JD00237.

    Article  Google Scholar 

  • Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last glacial maximum and Holocene climate in CCSM3. J. Climate, 19, 2526–2544.

    Article  Google Scholar 

  • Shi, Y. F., and Coauthors, 1993: Mid-Holocene climates and environments in China. Global and Planetary Change, 7, 219–233.

    Article  Google Scholar 

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. Tech. Rep. NCAR/TN475+STR, National Center for Atmospheric Research, Boulder Co., 1–125.

    Google Scholar 

  • Sun, H. C., G. Q. Zhou, and Q. C. Zeng, 2012: Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chinese J. Atmos. Sci., 36, 215–233.

    Google Scholar 

  • Sun, J. Q., and H. J. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res., 117, D08110, doi: 10.1029/2012JD017482.

    Google Scholar 

  • Sun, Y., Y. H. Ding, and A. G. Dai, 2010: Changing links between South Asian summer monsoon circulation and tropospheric land-sea thermal contrasts under a warming scenario. Geophys. Res. Lett., 37, L02704. doi: 10.1029/2009GL041662.

    Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192.

    Article  Google Scholar 

  • Tian, Z. P., and D. B. Jiang, 2013: Mid-holocene ocean and vegetation feedbacks over East Asia. Clim. Past, 9, 2153–2171.

    Article  Google Scholar 

  • Wang, H. J., 1999: Role of vegetation and soil in the Holocene megathermal climate over China. J. Geophys. Res., 104, 9361–9367.

    Article  Google Scholar 

  • Wang, H. J., 2000a: The interannual variability of the East Asian Monsoon and its relationship with SST in a coupled Atmosphere-Ocean-Land climate model. Adv. Atmos. Sci., 17, 31–47.

    Article  Google Scholar 

  • Wang, H. J., 2000b: The seasonal climate and low frequency oscillation in the simulated mid-Holocene megathermal climate. Adv. Atmos. Sci., 17, 445–457.

    Article  Google Scholar 

  • Wang, H. J., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376–386.

    Article  Google Scholar 

  • Wang, H. J., 2002: The mid-Holocene climate simulated by a gridpoint AGCM coupled with a biome model. Adv. Atmos. Sci., 19, 205–218.

    Article  Google Scholar 

  • Wang, S. W. and J. B. Huang, 2006: The relationship between flood/drought and Chinese ancient civilization in mid-Holocene. Progress in Natural Science, 16, 1238–1244. (in Chinese)

    Article  Google Scholar 

  • Wang, T., and H. J. Wang, 2013: Mid-Holocene Asian summer climate and its responses to cold ocean surface simulated in the PMIP2 OAGCMs experiments. J. Geophys. Res., 118, doi: 10.1029/2012JD018845.

  • Wang, T., H. J. Wang, and D. B. Jiang, 2010: Mid-Holocene East Asian summer climate as simulated by the PMIP2 models. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 93–102.

    Article  Google Scholar 

  • Wicker, L. J., and W. C. Skamarock, 2002: Time splitting methods for elastic models using forward time schemes, Mon. Wea. Rev., 130, 2088–2097.

    Article  Google Scholar 

  • Xie, P. P., A. Yatagai, M. Y. Chen, T. Hayasaka, Y. Fukushima, C. M. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607–626.

    Article  Google Scholar 

  • Xu, Y., X. J. Gao, Y. Shen, C. H. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763–772, doi: 10.1007/s00376-009-9029-z.

    Article  Google Scholar 

  • Yao, T. D., Z. C. Xie, X. L. Wu, and L. G. Thompson, 1991: Climatic-change since little ice-age recorded by Dunde ice cap. Science in China Series B, 34, 760–767.

    Google Scholar 

  • Yokoyama, Y., A. Suzuki, F. Siringan, Y. Maeda, A. Abe-Ouchi, R. Ohgaito, H. Kawahata, and H. Matsuzaki, 2011: Mid-Holocene palaeoceanography of the northern South China Sea using coupled fossil-modern coral and atmosphereocean GCM model. Geophys. Res. Lett., 38, D20109, doi: 10.1029/2010GL044231.

    Google Scholar 

  • Yu, E. T., 2013: High-resolution seasonal snowfall simulation over Northeast China. Chinese Science Bulletin, 58, 1412–1419, doi: 10.1007/s11434-012-5561-9.

    Article  Google Scholar 

  • Yu, E. T., H. J. Wang, and J. Q. Sun, 2010: A quick report on a dynamical downscaling simulation over China using the nested model. Atmos. Oceanic Sci. Lett., 3, 325–329.

    Google Scholar 

  • Yu, E. T., H. J. Wang, J. Q. Sun, and Y. Q. Gao, 2012: Climatic response to changes in vegetation in the Northwest Hetao Plain as simulated by the WRF model. Int. J. Climatol., 33, 1470–1481.

    Article  Google Scholar 

  • Zeng, Q. C., and M. Mu, 2002: On the design of compact and internally consistent model of climate system dynamics. Chinese J. Atmos. Sci., 26, 107–113.

    Google Scholar 

  • Zhang, R., D. B. Jiang, X. D. Liu, and Z. P. Tian, 2012: Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolution. Chinese Science Bulletin, 57, 4617–4626.

    Article  Google Scholar 

  • Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteorologica Sinica, 61, 559–568. (in Chinese)

    Google Scholar 

  • Zhang, Y., and J. Q. Sun, 2012: Model projections of precipitation minus evaporation in China. Acta Meteorologica Sinica, 26, 376–388.

    Article  Google Scholar 

  • Zhang, Z. S., H. J. Wang, Z. T. Guo and D. B. Jiang, 2007: What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeograhy, Palaeoclimatology, Palaeoecology, 245, 317–331.

    Article  Google Scholar 

  • Zhao, P., Y. N. Zhu, and R. H. Zhang, 2007: An Asia-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn., 29, 293–303.

    Article  Google Scholar 

  • Zhao, P., S. Yang, and R. C. Yu, 2010: Long-term changes in rainfall over Eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23, 1544–1562.

    Article  Google Scholar 

  • Zhao, P., S. Yang, H. J. Wang, and Q. Zhang, 2011: Interdecadal Relationships between the Asian-Pacific Oscillation and Summer Climate Anomalies over Asia, North Pacific and North America during Recent 100 Years. J. Climate, 24, 4793–4799.

    Article  Google Scholar 

  • Zhao, P., B. Wang, and X. J. Zhou, 2012: Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation. Climate Dyn., 39: 1197–1207.

    Article  Google Scholar 

  • Zhou, B. T., and P. Zhao, 2009a: Inverse correlation between ancient winter and summer monsoons in East Asia? Chinese Science Bulletin, 54, 3760–3767.

    Article  Google Scholar 

  • Zhou, B. T., and P. Zhao, 2009b: Coupled simulation result of seasonal evolution of southwesterly wind climate over eastern China in mid-Holocene. Quaternary Sciences, 29, 211–220. (in Chinese)

    Google Scholar 

  • Zhou, B. T., and P. Zhao, 2010: Modeling variations of summer upper tropospheric temperature and associated climate over the Asian Pacific region during the mid-Holocene. J. Geophys. Res., 115, D20109, doi: 10.1029/2010JD014029.

    Article  Google Scholar 

  • Zhou, B. T., and D. D. Xia, 2012: Interdecadal change of the connection between winter North Pacific Oscillation and summer precipitation in the Huaihe River valley. Science China Earth Sciences, 55, 2049–2057.

    Article  Google Scholar 

  • Zhou, X. J., P. Zhao, G. Liu, and T. J. Zhou, 2011: Characteristics of decadal-centennial-scale changes in East Asian summer monsoon circulation and precipitation during the Medieval Warm Period, Little Ice Age and in the present day. Chinese Science Bulletin, 56(28–29), 3003–3011.

    Article  Google Scholar 

  • Zhu, Y. L., H. J. Wang, W. Zhou, and J. H. Ma, 2010: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate. Dyn., 36, 1463–1473.

    Article  Google Scholar 

  • Zuo, R. T., M. Zhang, D. L. Zhang, A. H. Wang, and Q. C. Zeng, 2004: Designing and climatic numerical modeling of 21-Level AGCM (IAP AGCM-III) Part I. dynamical framework. Chinese J. Atmos. Sci., 28, 659–673. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Entao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, E., Wang, T., Gao, Y. et al. Precipitation pattern of the mid-Holocene simulated by a high-resolution regional climate model. Adv. Atmos. Sci. 31, 962–971 (2014). https://doi.org/10.1007/s00376-013-3178-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3178-9

Key words

Navigation