Skip to main content

Advertisement

Log in

Biochar significantly reduced nutrient-induced positive priming in a subtropical forest soil

  • ORIGINAL PAPER
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Application of biochar to soil may stabilize soil organic carbon (SOC), concomitantly increasing nutrient retention. However, the interactive effect of biochar and nutrients on SOC and the underlying microbial mechanisms remain poorly understood, particularly in intensively managed forests where decarbonization is substantial after converting from natural forests. This 80-day incubation experiment aimed to quantify native SOC mineralization as affected by biochar (B) and nutrients [nitrogen (N) or phosphorus (P)], linking to the chemical composition of SOC, soil microbial community composition, and enzyme activities within a subtropical Moso bamboo (Phyllostachys edulis) forest soil. Results presented that compared to the control (nil-nutrient), nutrients (N, P, and NP) significantly destabilized native SOC [positive priming effect (PE); 20–98% increase in SOC mineralization], whereas such destabilization effect was significantly reduced by biochar (6.0–19%). The positive PE by nutrient was due to the increases in O-alkyl C, microbial biomass C, available mineral N, soil pH, β-glucosidase, and invertase activities. Meanwhile, the greater PE by N than P could be attributed to (i) decreases in diversity of bacterial and fungal communities; and (ii) increases in the relative abundances of microbial taxa such as Bacilli, Planctomycetes, and Alphaproteobacteria. Importantly, biochar’s stabilization effect was because biochar not only lowered NH4+-N and NO3-N and β-glucosidase activity, but also increased the activity of C-fixing enzyme (RubisCO) and polyphenol oxidase activity. Furthermore, biochar significantly decreased soil O-alkyl C that possibly resulted in less labile SOC mineralization, but increased aromatic C resulting in lower fungal diversity. We conclude that the biochar significantly reduces the destabilization effects of nutrients on SOC, highlighting that the biochar application is an effective approach to mitigate soil CO2 emissions within subtropical forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper can be requested from the corresponding author (Y.L.).

References

  • Alef K, Nannipieri P (1995) Enzyme activities. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 311–373

    Google Scholar 

  • Balesdent J, Balabane M (1992) Maize root-derived soil organic carbon estimated by natural 13C abundance. Soil Biol Biochem 24:97–101

    Article  Google Scholar 

  • Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S (2014) Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fert Soils 50:1189–1200

    Article  CAS  Google Scholar 

  • Bay SK, Waite DW, Dong XY, Gillor O, Chown SL, Hugenholtz P, Greening C (2021) Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME J 15:3339–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Q, Wang XY, Bao XG, Zhu LY, Xie ZB, Che ZX, Sun B (2022) Exogenous substrate quality determines the dominant keystone taxa linked to carbon mineralization: evidence from a 30-year experiment. Soil Biol Biochem 169:108683

    Article  CAS  Google Scholar 

  • Cai XQ, Lin ZW, Penttinen P, Li YF, Li YC, Luo Y, Yue T, Jiang PK, Fu WJ (2018) Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. Forest Ecol Manag 422:161–171

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER (2018) Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biol 24:2721–2734

    Article  Google Scholar 

  • Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J, Yang Y (2018) Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat Commun 9:3951

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan M, Wu FP, Jia ZK, Wang SG, Cai YJ, Chang SX (2020) Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a Chernozemic soil. Biol Fert Soils 56:1023–1036

    Article  CAS  Google Scholar 

  • Duan Y, Chen L, Li YM, Wang QY, Zhang CZ, Ma DH, Li JY, Zhang JB (2021) N, P and straw return influence the accrual of organic carbon fractions and microbial traits in a Mollisol. Geoderma 403:115373

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Wu JG (2021) Changes in soil fungal community on SOC and POM accumulation under different straw return modes in dryland farming. Ecosyst Health Sust 7:1935326

    Article  Google Scholar 

  • Fan YX, Zhong XJ, Lin TC, Lyu MK, Wang MH, Hu WF, Yang ZJ, Chen GS, Guo JF, Yang YS (2020) Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest. Biol Fert Soils 56:205–216

    Article  CAS  Google Scholar 

  • Fang Y, Singh B, Singh BP (2015) Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem 80:136–145

    Article  CAS  Google Scholar 

  • Fang Y, Nazaries L, Singh BK, Singh BP (2018) Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Chang Biol 24:2775–2790

    Article  Google Scholar 

  • Fang Y, Singh BP, Farrell M, Van Zwieten L, Armstrong R, Chen C, Bahadori M, Tavakkoli E (2020) Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil. Soil Biol Biochem 145:107800

    Article  CAS  Google Scholar 

  • Feng JG, Zhu B (2021) Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biol Biochem 153:108117

    Article  Google Scholar 

  • Frankenberger WT, Johanson JB (1983) Method of measuring invertase activity in soil. Plant Soil 74:301–311

    Article  CAS  Google Scholar 

  • Fromentin M, Bridier-Nahmias A, Legoff J, Delarue AM, Ranger N, Vuillard C, Vale JD, Zucman N, Alberdi A, Ricard JD, Roux D (2022) The 16S rRNA lung microbiome in mechanically ventilated patients: a methodological study. Exp Lung Res 48:23–34

    Article  CAS  PubMed  Google Scholar 

  • Fu YY, Luo Y, Auwal M, Singh BP, Van Zwieten L, Xu JM (2022) Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biol Fert Soils 58:565–577

    Article  CAS  Google Scholar 

  • Garrett LG, Smaill SJ, Beets PN, Kimberley MO, Clinton PW (2021) Impacts of forest harvest removal and fertiliser additions on end of rotation biomass, carbon and nutrient stocks of Pinus radiata. For Ecol Manag 493:119161

    Article  Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 44:151–151

    Article  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    Article  CAS  PubMed  Google Scholar 

  • Guo GX, Kong WD, Liu JB, Zhao JX, Du HD, Zhang XZ, Xia PH (2015) Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Appl Microbiol Biotechnol 99:8765–8776

    Article  CAS  PubMed  Google Scholar 

  • Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

    Article  Google Scholar 

  • Hicks LC, Meir P, Nottingham AT, Reay DS, Stott AW, Salinas N, Whitaker J (2019) Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils. Soil Biol Biochem 129:212–222

    Article  CAS  Google Scholar 

  • Hossain MZ, Sarkar B, Donne SW, Ok YS, Palansooriya KN, Kirkham MB, Chowdhury S, Bolan N (2020) Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2:379–420

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) International soil classification system for naming soils and creating legends for soil maps Update 2015, World Soil Reports No. 106. FAO, Rome, pp 203

  • Ivanova AA, Beletsky AV, Rakitin AL, Kadnikov VV, Philippov DA, Mardanov AV, Ravin NV, Dedysh SN (2020) Closely located but totally distinct: highly contrasting prokaryotic diversity patterns in raised bogs and eutrophic fens. Microorganisms 8:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis part 2, Chemical and microbiological properties. American Society of Agronomy Inc. and Soil Science Society of America Inc., Madison, WI, pp 643–698

    Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, Cayuela ML, Camps-Arbestain M, Whitman T (2021) Biochar in climate change mitigation. Nat Geosci 14:883–892

    Article  CAS  Google Scholar 

  • Li SL, Liang CT, Shangguan ZP (2017) Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Sci Total Environ 607:109–119

    Article  PubMed  Google Scholar 

  • Li C, Shi YJ, Zhou GM, Zhou YF, Xu L, Tong L, Liu X (2018a) Effects of different management approaches on soil carbon dynamics in Moso bamboo forest ecosystems. CATENA 169:59–68

    Article  CAS  Google Scholar 

  • Li YC, Li YF, Chang SX, Yang YF, Fu SL, Jiang PK, Luo Y, Yang M, Chen ZH, Hu SD, Zhao MX, Liang X, Xu QF, Zhou GM, Zhou JZ (2018b) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon degrading microbial activity. Soil Biol Biochem 122:173–185

    Article  CAS  Google Scholar 

  • Li Y, Tian DS, Wang JS, Niu SL, Tian J, Ha DL, Qu YX, Jing GW, Kang XM, Song B (2019) Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest. Peer J 7:e7631

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JY, Han GX, Wang GM, Liu XL, Zhang QQ, Chen YW, Song WM, Qu WD, Chu XJ, Li PG (2021a) Imbalanced nitrogen–phosphorus input alters soil organic carbon storage and mineralisation in a salt marsh. CATENA 208:105720

    Article  Google Scholar 

  • Li JH, Cheng BH, Zhang R, Li WJ, Shi XM, Han YW, Ye LF, Ostle NJ, Bardgett RD (2021b) Nitrogen and phosphorus additions accelerate decomposition of slow carbon pool and lower total soil organic carbon pool in alpine meadows. Land Degrad Dev 32:1761–1772

    Article  Google Scholar 

  • Li XY, Wang YP, Lu XJ, Yan JH (2021c) Diagnosing the impacts of climate extremes on the interannual variations of carbon fluxes of a subtropical evergreen mixed forest. Agric for Meteorol 307:10857

    Article  Google Scholar 

  • Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lipson DA, Kuske CR, Gallegos-Graves L, Oechel WC (2014) Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Global Change Biol 20:2555–2565

    Article  Google Scholar 

  • Liu WX, Qiao CL, Yang S, Bai WM, Liu LL (2018) Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma 332:37–44

    Article  CAS  Google Scholar 

  • Liu YM, Cao WQ, Chen XX, Yu BG, Lang M, Chen XP, Zou CQ (2020) The responses of soil enzyme activities, microbial biomass and microbial community structure to nine years of varied zinc application rates. Sci Total Environ 737:140245

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li Y, Liu S, Gao W, Shen J, Zhang G, Xu H, Zhu Z, Ge T, Wu J (2022) Anaerobic primed CO2 and CH4 in paddy soil are driven by Fe reduction and stimulated by biochar. Sci Total Environ 808:151911

    Article  CAS  PubMed  Google Scholar 

  • Lloyd DA, Ritz K, Paterson E, Kirk GJD (2016) Effects of soil type and composition of rhizodeposits on rhizosphere priming phenomena. Soil Biol Biochem 103:512–521

    Article  CAS  Google Scholar 

  • Lu WW, Ding WX, Zhang JH, Li Y, Luo JF, Bolan N, Xie ZB (2014) Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biol Biochem 76:12–21

    Article  CAS  Google Scholar 

  • Lu XH, Li YF, Wang HL, Singh BP, Hu SD, Luo Y, Li JW, Xiao YH, Cai XQ, Li YC (2019) Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agric for Meteorol 271:168–179

    Article  Google Scholar 

  • Lu WW, Zha QZ, Zhang HL, Chen HYH, Yu J, Tu F, Ruan HH (2021) Changes in soil microbial communities and priming effects induced by rice straw pyrogenic organic matter produced at two temperatures. Geoderma 400:115217

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, De NM, Lin QM, Devonshire BJ, Brookes PC (2013) Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH. Soil Biol Biochem 57:513–523

    Article  CAS  Google Scholar 

  • Luo ZK, Wang EL, Sun OJ (2016) A meta–analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems. Soil Biol Biochem 101:96–103

    Article  CAS  Google Scholar 

  • Luo Y, Zang HD, Yu ZY, Chen ZY, Gunina A, Kuzyakov Y, Xu JM, Zhang KL, Brookes PC (2017) Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biol Biochem 106:28–35

    Article  CAS  Google Scholar 

  • Luo RY, Fan JL, Wang WJ, Luo JF, Kuzyakov Y, He JS, Ding WX (2019) Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau. Sci Total Environ 650:303–312

    Article  CAS  PubMed  Google Scholar 

  • Luo RY, Kuzyakov Y, Liu DY, Fan JL, Luo JF, Lindsey S, He JS, Ding WX (2020) Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biol Biochem 144:107764

    Article  CAS  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128

    Article  CAS  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  • Nottingham AT, Turner BL, Chamberlain PM, Stott AW, Tanner EVJ (2012) Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry 111:219–237

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: community ecology package, R package version 2.5–7 ed

  • Oladele SO, Adetunji AT (2021) Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland. Int Soil Water Conse 9:76–86

    Article  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Q, Li M, Mgelwa AS, Hu YL (2023) Divergent mineralization of exogenous organic substrates and their priming effects depending on soil types. Biol Fert Soils 59:87–101

    Article  CAS  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

  • Saentho A, Wisawapipat W, Lawongsa P, Aramrak S, Prakongkep N, Klysubun WC (2022) Speciation and pH- and particle size-dependent solubility of phosphorus in tropical sandy soils. Geoderma 408:115590

    Article  CAS  Google Scholar 

  • Song YZ, Li YF, Cai YJ, Fu SL, Luo Y, Wang HL, Liang CF, Lin ZW, Hu SD, Li YC, Chang SX (2019) Biochar decreases soil N2O emissions in Moso bamboo plantations through decreasing labile N concentrations, N-cycling enzyme activities and nitrification/denitrification rates. Geoderma 348:135–145

    Article  CAS  Google Scholar 

  • Tang HM, Li C, Xu YL, Cheng KK, Shi LH, Wen L, Li WY, Xiao XP (2021) Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field. Sci Rep 11:18441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JY, Xiong ZQ, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523

    Article  CAS  Google Scholar 

  • Wei XM, Zhu ZK, Liu Y, Luo Y, Deng YW, Xu XL, Liu SL, Richter A, Shibistova O, Guggenberger G, Wu JS, Ge TD (2020) C:N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biol Fert Soils 56:1093–1107

    Article  Google Scholar 

  • Weng Z, Van Zwieten L, Tavakkoli E, Rose MT, Singh BP, Joseph S, Macdonald LM, Kimber S, Morris S, Rose TJ, Archanjo BS, Tang CX, Franks AE, Diao H, Schweizer S, Tobin MJ, Klein AR, Vongsvivut J, Chang SLY, Kopittke PM, Cowie A (2022) Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nat Commun 13:5177

    Article  CAS  PubMed  Google Scholar 

  • Wild B, Schnecker J, Alves RJE, Barsukov P, Barta J, Capek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Santruckova H, Shibistova O, Urich T, Watzka M, Zrazhevskaya G, Richter A (2014) Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol Biochem 75:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Huang YP, Wu L, Tian YF, Wang QQ, Wang BR, Xu MG, Zhang WJ (2021) Long-term manuring increases microbial carbon use efficiency and mitigates priming effect via alleviated soil acidification and resource limitation. Biol Fert Soils 57:925–934

    Article  CAS  Google Scholar 

  • Yan TT, Xue JH, Zhou ZD, Wu YB (2021) Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Sci Total Environ 794:148757

    Article  CAS  PubMed  Google Scholar 

  • Yang BB, Li DD, Yuan SC, Jin LC (2021) Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils. CATENA 204:105457

    Article  CAS  Google Scholar 

  • Yin YA, Gu J, Wang XJ, Zhang YJ, Zheng W, Chen R, Wang XC (2019) Effects of rhamnolipid and Tween-80 on cellulase activities and metabolic functions of the bacterial community during chicken manure composting. Bioresource Technol 288:121507

    Article  CAS  Google Scholar 

  • Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF (2014) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. PNAS 111:4910–4915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Chen L, Pan S, Li Y, Kuzyakov Y, Xu J, Brookes PC, Luo Y (2018) Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. Eur J Soil Sci 69:521–534

    Article  CAS  Google Scholar 

  • Yu ZY, Ling L, Singh BP, Luo Y, Xu JM (2020) Gain in carbon: deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils. Sci Total Environ 746:141057

    Article  CAS  PubMed  Google Scholar 

  • Zhang QF, Cheng L, Feng JG, Mei KC, Zeng QX, Zhu BA, Chen YM (2021a) Nitrogen addition stimulates priming effect in a subtropical forest soil. Soil Biol Biochem 160:108339

    Article  CAS  Google Scholar 

  • Zhang SB, Fang YY, Luo Y, Li YC, Ge TD, Wang YX, Wang HL, Yu B, Song XZ, Chen JH, Zhou JS, Li YF, Chang SX (2021b) Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Sci Total Environ 801:149717

    Article  CAS  PubMed  Google Scholar 

  • Zheng YY, Jin J, Wang XJ, Clark GJ, Tang CX (2022) Increasing nitrogen availability does not decrease the priming effect on soil organic matter under pulse glucose and single nitrogen addition in woodland topsoil. Soil Biol Biochem 172:108767

    Article  CAS  Google Scholar 

  • Zhou GY, Zhou XH, Zhang T, Du ZG, He YH, Wang XH, Shao JJ, Cao Y, Xue SG, Wang HL, Xu CY (2017) Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecol Manag 405:339–349

    Article  Google Scholar 

  • Zhou ZF, Wei WL, Shi XJ, Liu YM, He XH, Wang MX (2019) Twenty-six years of chemical fertilization decreased soil RubisCO activity and changed the ecological characteristics of soil cbbL-carrying bacteria in an entisol. Appl Soil Ecol 141:1–9

    Article  Google Scholar 

  • Zhou J, Wen Y, Shi LL, Marshall MR, Kuzyakov Y, Blagodatskaya E, Zang HD (2021) Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biol Biochem 152:108069

    Article  CAS  Google Scholar 

  • Zhu ZK, Ge TD, Luo Y, Liu SL, Xu XL, Tong CL, Shibistova O, Guggenberger G, Wu JS (2018) Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol Biochem 121:67–76

    Article  CAS  Google Scholar 

  • Zhu XM, Mao LJ, Chen BL (2019) Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended. Soil Environ Int 133:105211

    Article  CAS  PubMed  Google Scholar 

  • Zhu KY, Wang QC, Zhang Y, Zarif N, Ma SJ, Xu LQ (2022a) Variation in soil bacterial and fungal community composition at different successional stages of a broad-leaved Korean pine forest in the lesser Hinggan mountains. Forests 13:625

    Article  Google Scholar 

  • Zhu ZK, Fang YY, Liang YQ, Li YH, Liu SL, Li Y, Li B, Gao W, Yuan H, Kuzyakov Y, Wu JS, Richter A, Ge TD (2022b) Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biol Biochem 169:108669

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the useful suggestions provided by Pei Xue from University of Sydney.

Funding

This research was funded by the National Natural Science Foundation of China (Nos. 32271845, 31870599) and the National Key Research and Development Program of China (No. 2022YFE0127800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 417 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Fang, Y., Kawasaki, A. et al. Biochar significantly reduced nutrient-induced positive priming in a subtropical forest soil. Biol Fertil Soils 59, 589–607 (2023). https://doi.org/10.1007/s00374-023-01723-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01723-7

Keywords

Navigation