Skip to main content
Log in

A new primer set for Clade I nosZ that recovers genes from a broader range of taxa

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Denitrification is an important global N cycle process. The gene encoding NosZ that converts nitrous oxide (N2O) to N2 has been widely used as a biomarker to study denitrifying communities. However, conventional PCR primers target a limited range of the genetically diverse Clade I nosZ, and the amplicons are too long for sequencing on current NGS platforms. To address these issues, we developed a new PCR primer set that amplifies a 355-bp region of Clade I nosZ and captures broader taxonomic coverage than conventional primers in in silico tests. When compared with the widely used nosZF_nosZR_Rich_2003 set using the same soil samples and the same sequencing depth, the new set retrieved genes from four times more unique species, with consistently higher general diversity-based metrics. The new primer set performed well with different sequencing platforms (Ion Torrent and Illumina), and among a wide variety of soils from polar to tropical, desert to agricultural, and surface to a very low biomass subsoil, with significant differences in denitrifying community diversity and composition. This new primer set for Clade I together with the primers recently reported for Clade II by Chee-Sanford et al. (J Microbiol Meth 172:105908, 2020) provides a more comprehensive assessment of denitrifier gene hosts, their ecological patterns, and the degree of novelty in retrieved gene sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Raw sequencing data generated with Ion Torrent PGM and Illumina MiSeq were deposited in the NCBI Sequence Read Archive (SRA) database under the study accession PRJNA640470 and PRJNA640229, respectively.

References

  • Castellano-Hinojosa A, González-López J, Bedmar EJ (2018) Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol Fertil Soils 54:829–840

    Article  CAS  Google Scholar 

  • Chee-Sanford JC, Connor L, Krichels A, Yang WH, Sanford RA (2020) Hierarchical detection of diverse Clade II (atypical) nosZ genes using new primer sets for classical- and multiplex PCR array applications. J Microbiol Methods 172:105908

    Article  CAS  Google Scholar 

  • Chen Z, Liu J, Wu M, Xie X, Wu J, Wei W (2012) Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb Ecol 63:446–459

    Article  Google Scholar 

  • Cheneby D, Hartmann A, Hénault C, Topp E, Germon J (1998) Diversity of denitrifying microflora and ability to reduce N2O in two soils. Biol Fertil Soils 28:19–26

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  Google Scholar 

  • Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291

    Article  Google Scholar 

  • Graf DRH, Zhao M, Jones CM, Hallin S (2016) Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils. Soil Biol Biochem 100:125–128

    Article  CAS  Google Scholar 

  • Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55

    Article  CAS  Google Scholar 

  • Harter J, Weigold P, El-Hadidi M, Huson DH, Kappler A, Behrens S (2016) Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci Total Environ 562:379–390

    Article  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  Google Scholar 

  • IPCC (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. www.ipcc.ch/srccl/. Accessed 9 Dec 2020

  • Ji Y, Conrad R, Xu H (2020) Responses of archaeal, bacterial, and functional microbial communities to growth season and nitrogen fertilization in rice fields. Biol Fertil Soils 56:81–95

    Article  CAS  Google Scholar 

  • Jones CM, Graf DR, Bru D, Philippot L, Hallin S (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–426

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2016) Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    Article  CAS  Google Scholar 

  • Ma Y, Zilles JL, Kent AD (2019) An evaluation of primers for detecting denitrifiers via their functional genes. Environ Microbiol 21:1196–1210

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: community ecology package.

  • Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA, Ritalahti KM, Loffler FE, Konstantinidis KT (2014) Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio 5:e01193-01114

  • Penton CR, St Louis D, Pham A, Cole JR, Wu L, Luo Y, Schuur EA, Zhou J, Tiedje JM (2015) Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils. Front Microbiol 6:746

    Article  Google Scholar 

  • Philippot L, Spor A, Henault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron PA (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619

    Article  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  Google Scholar 

  • Rich JJ, Heichen RS, Bottomley PJ, Cromack K Jr, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69:5974–5982

    Article  CAS  Google Scholar 

  • Rosch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  CAS  Google Scholar 

  • Samad MS, Biswas A, Bakken LR, Clough TJ, de Klein CAM, Richards KG, Lanigan GJ, Morales SE (2016) Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci Rep-Uk 6:35990–35990

    Article  CAS  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, Rodriguez G, Massol-Deya A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Loffler FE (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109:19709–19714

    Article  CAS  Google Scholar 

  • Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162:61–68

    Article  CAS  Google Scholar 

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489

    Article  Google Scholar 

  • Shen W, Xue H, Gao N, Shiratori Y, Kamiya T, Fujiwara T, Isobe K, Senoo K (2020) Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils. Biol Fertil Soils 56:39–51

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc Lond Ser B Biol Sci 367:1157–1168

    Article  CAS  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  CAS  Google Scholar 

  • Tsiknia M, Paranychianakis NV, Varouchakis EA, Nikolaidis NP (2015) Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol Ecol 91:fiv052

  • Wang Q, Quensen JF, Fish JA, Lee TK, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4:e00592–e00513

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Fish JA, Gilman M, Sun Y, Brown CT, Tiedje JM, Cole JR (2015) Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32

    Article  CAS  Google Scholar 

  • Wang H, Han J, Deng N, An S (2019) Effects of the natural restoration time of abandoned farmland in a semiarid region on the soil denitrification rates and abundance and community structure of denitrifying bacteria. Appl Microbiol Biotechnol 103:1939–1951

    Article  CAS  Google Scholar 

  • Whitaker D, Christman M (2014) clustsig: significant cluster analysis. R package version 1.1

  • Wickham H, Chang W, RStudio (2017) ggplot2: create elegant data visualisations using the grammar of graphics. Springer, New York

    Google Scholar 

  • Yoon S, Nissen S, Park D, Sanford RA, Loffler FE (2016) Nitrous oxide reduction kinetics distinguish bacteria harboring Clade I NosZ from those harboring Clade II NosZ. Appl Environ Microbiol 82:3793–3800

    Article  CAS  Google Scholar 

  • Zhang B, Penton CR, Xue C, Wang Q, Zheng T, Tiedje JM (2015) Evaluation of the Ion Torrent Personal Genome Machine for gene-targeted studies using amplicons of the nitrogenase gene nifH. Appl Environ Microbiol 81:4536–4545

    Article  CAS  Google Scholar 

  • Zhang B, Penton CR, Xue C, Quensen JF, Roley SS, Guo J, Garoutte A, Zheng T, Tiedje JM (2017) Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol Biochem 112:140–152

    Article  CAS  Google Scholar 

  • Zhao S, Wang Q, Zhou J, Yuan D, Zhu G (2018) Linking abundance and community of microbial NO-producers and NO-reducers with enzymatic NO production potential in a riparian zone. Sci Total Environ 642:1090–1099

    Article  CAS  Google Scholar 

  • Zumft WG, Kroneck PM (2007) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by bacteria and Archaea. Adv Microb Physiol 52:107–227

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded in part by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (Awards DE-SC0018409 and DE-FC02-07ER64494), by the National Science Foundation Long-term Ecological Research Program (DEB 1637653) at the Kellogg Biological Station, by Michigan State University AgBioResearch, and by National Natural Science Foundation of China (81800517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Tiedje.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Penton, C.R., Yu, Z. et al. A new primer set for Clade I nosZ that recovers genes from a broader range of taxa. Biol Fertil Soils 57, 523–531 (2021). https://doi.org/10.1007/s00374-021-01544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01544-6

Keywords

Navigation