Skip to main content
Log in

Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Taprooting crop species are capable of creating soil biopores (>2 mm in diameter) in the subsoil due to their large root size and deep-rooting habit. The aim of this study was to quantify root growth dynamics of wheat in the subsoil during its complete growth season as affected by crop sequence. Temporal observation on root length (km m−2) of wheat inside and outside of biopores at four growth stages (tillering, booting, anthesis, and milk) was conducted by using the profile wall method under the two crop sequence treatments involving two precrops, viz., chicory and tall fescue. Frequency of biopore presence measured on vertical profile walls depended on the choice of precrops in which chicory precrop resulted in higher frequency (2.3 %) compared with tall fescue (1.5 %). Root length of wheat measured inside biopores was significantly higher when grown after chicory (0.024 km m−2) in comparison to tall fescue (0.006 km m−2). On average, root length outside biopores after growing chicory was 45.9 % higher than tall fescue until the stage of anthesis. We conclude that at the site under study biopores as pathways for rapid root growth into deeper soil layers allow roots to re-enter and explore the subsoil. Thus, cereals cultivated in rotation with taprooted crops can draw benefit from enhanced uptake of water and nutrients from deeper soil layers during early growth stages. Model simulations with various abiotic and biotic factors will be helpful to reveal the direct evidence of biopore-root-shoot relationship in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Athmann M, Kautz T, Pude R, Köpke U (2013) Root growth in biopores—evaluation with in situ endoscopy. Plant Soil 371:179–190. doi:10.1007/s11104-013-1673-5

    Article  CAS  Google Scholar 

  • Atwell BJ (1990) The effect of soil compaction on wheat during early tillering. New Phytol 115:29–35. doi:10.1111/j.1469-8137.1990.tb00918.x

    Article  Google Scholar 

  • Barej JAM, Pätzold S, Perkons U, Amelung W (2014) Phosphorus fractions in bulk subsoil and its biopore systems. Eur J Soil Sci 65:553–561. doi:10.1111/ejss.12124

    Article  CAS  Google Scholar 

  • Bengough AG (2003) Root growth and function in relation to soil structure, composition, and strength. In: de Kroon H, Visser EJW (eds) Root ecology. Springer-Verlag, Berlin, pp 151–171

    Chapter  Google Scholar 

  • Böhm W (1979) Profile wall methods. In: Böhm W (ed) Methods of studying root systems. Springer-Verlag, Berlin, pp 48–60

  • Bouché MB (1975) Action de la faune sur les etats de la matiere organique dans les ecosystemes. In: Kilbertius G, Reisinger O, Mourey A, Cancela da Fonseca JA (eds) Humification et biodégradation. Pierron, Sarreguemines, pp 157–168

    Google Scholar 

  • Caldwell MM, Manwaring JH, Durham SL (1996) Species interactions at the level of fine roots in the field: influence of soil nutrient heterogeneity and plant size. Oecologia 106:440–447. doi:10.1007/Bf00329699

    Article  Google Scholar 

  • Carrow RN (1996) Drought avoidance characteristics of diverse tall fescue cultivars. Crop Sci 36:371–377. doi:10.2135/cropsci1996.0011183X003600020026x

    Article  Google Scholar 

  • Chen YL, Palta J, Clements J, Buirchell B, Siddique KHM, Rengel Z (2014) Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crop Res 165:61–70. doi:10.1016/j.fcr.2014.04.007

    Article  Google Scholar 

  • Coleman M (2007) Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil 299:195–213. doi:10.1007/s11104-007-9375-5

    Article  CAS  Google Scholar 

  • Davidson RL (1969) Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifolium repens L. Ann Bot London 33:571–577

    Google Scholar 

  • Ehlers W (1975) Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Sci 119:242–249. doi:10.1097/00010694-197503000-00010

    Article  Google Scholar 

  • Ehlers W, Köpke U, Hesse F, Böhm W (1983) Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil Tillage Res 3:261–275. doi:10.1016/0167-1987(83)90027-2

    Article  Google Scholar 

  • Fleige H, Strebel O, Renger M, Grimme H (1981) Die potentielle P-Anlieferung durch Diffusion als Funktion von Tiefe, Zeit und Durchwurzelung bei einer Parabraunerde aus Löß. Mitt Dtsch Bodenkd Ges 32:305–310

    Google Scholar 

  • Gaiser T, Perkons U, Küpper PM, Uteau Puschmann D, Peth S, Kautz T, Pfeifer J, Ewert F, Horn R, Köpke U (2012) Evidence of improved water uptake from subsoil by spring wheat following lucerne in a temperate humid climate. Field Crop Res 126:56–62. doi:10.1016/j.fcr.2011.09.019

    Article  Google Scholar 

  • Gaiser T, Perkons U, Küpper PM, Kautz T (2013) Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation. Ecol Model 256:6–15. doi:10.1016/j.ecolmodel.2013.02.016

    Article  Google Scholar 

  • Girma K, Holtz S, Tubaña B, Solie J, Raun W (2014) Nitrogen accumulation in shoots as a function of growth stage of corn and winter wheat. J Plant Nutr 34:165–182. doi:10.1080/01904167.2011.533320

    Article  Google Scholar 

  • Han E, Kautz T, Perkons U, Lüsebrink M, Pude R, Köpke U (2015) Quantification of soil biopore density after perennial fodder cropping. Plant Soil. doi:10.1007/s11104-015-2488-3

    Google Scholar 

  • Hatano R, Iwanaga K, Okajima H, Sakuma T (1988) Relationship between the distribution of soil macropores and root elongation. Soil Sci Plant Nutr 34:535–546. doi:10.1080/00380768.1988.10416469

    Article  Google Scholar 

  • Hirth JR, McKenzie BM, Tisdall JM (2005) Ability of seedling roots of Lolium perenne L. to penetrate soil from artificial biopores is modified by soil bulk density, biopore angle and biopore relief. Plant Soil 272:327–336. doi:10.1007/s11104-004-5764-1

    Article  CAS  Google Scholar 

  • Huang B, Gao H (2000) Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci 40:196–203. doi:10.2135/cropsci2000.401196x

    Article  Google Scholar 

  • Hutchings MJ, John EA (2003) Distribution of roots in soil, and root foraging activity. In: de Kroon H, Visser EJW (eds) Root ecology. Springer-Verlag, Berlin, pp 33–60

    Chapter  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. FAO, Rome

    Google Scholar 

  • Jakobsen BE, Dexter AR (1988) Influence of biopores on root growth, water uptake and grain yield of wheat (Triticum aestivum) based on predictions from a computer model. Biol Fertil Soils 6:315–321. doi:10.1007/BF00261020

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163(3):459–480. doi:10.1111/j.1469-8137.2004.01130.x

  • Jungk A, Claassen N (1997) Ion diffusion in the soil-root system. Adv Agron 61:53–110. doi:10.1016/S0065-2113(08)60662-8

    Article  CAS  Google Scholar 

  • Kautz T (2014) Research on subsoil biopores and their functions in organically managed soils: a review. Renewable Agric Food Syst. doi:10.1017/S1742170513000549

  • Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R, Javaux M, Kemna A, Kuzyakov Z, Munch J, Pätzold S, Peth S, Scherer HW, Schloter M, Schneider H, Vanderborght J, Vetterlein D, Walter A, Wiesenberg GLB, Köpke U (2013a) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022. doi:10.1016/j.soilbio.2012.09.014

    Article  CAS  Google Scholar 

  • Kautz T, Perkons U, Athmann M, Pude R, Köpke U (2013b) Barley roots are not constrained to large-sized biopores in the subsoil of a deep Haplic Luvisol. Biol Fertil Soils 49:959–963. doi:10.1007/s00374-013-0783-9

    Article  Google Scholar 

  • Kautz T, Lüsebrink M, Pätzold S, Vetterlein D, Pude R, Athmann M, Küpper PM, Perkons U, Köpke U (2014) Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia Int J Soil Biol 57:47–52. doi:10.1016/j.pedobi.2013.09.008

    Article  Google Scholar 

  • Kirkegaard JA, Lilley JM, Howe GN, Graham JM (2007) Impact of subsoil water use on wheat yield. Aust J Agric Res 58:303–315. doi:10.1071/AR06285

    Article  Google Scholar 

  • Köpke U, Athmann M, Han E, Kautz T (2015) Optimising cropping techniques for nutrient and environmental management in organic agriculture. Sustain Agric Res 4:11–21

    Google Scholar 

  • Kuhlmann H (1990) Importance of the subsoil for the K nutrition of crops. Plant Soil 127:129–136. doi:10.1007/bf00010845

    Article  CAS  Google Scholar 

  • Kuhlmann H, Baumgärtel G (1991) Potential importance of the subsoil for the P and Mg nutrition of wheat. Plant Soil 137:259–266. doi:10.1007/bf00011204

    Article  CAS  Google Scholar 

  • Kuhlmann H, Barraclough PB, Weir AH (1989) Utilization of mineral nitrogen in the subsoil by winter wheat. Z Pflanzenernahr Bodenkd 152:291–295. doi:10.1002/jpln.19891520305

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305. doi:10.1007/s11104-006-9162-8

    Article  CAS  Google Scholar 

  • Lancashire PD, Bleiholder H, Van Den Boom T, Langelüddeke R, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth-stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot. doi:10.1093/jxb/eru508

    Google Scholar 

  • Materechera SA, Alston AM, Kirby JM, Dexter AR (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 144:297–303. doi:10.1007/BF00012888

    Article  Google Scholar 

  • McCallum MH, Kirkegaard JA, Green TW, Cresswell HP, Davies SL, Angus JF, Peoples MB (2004) Improved subsoil macroporosity following perennial pastures. Aust J Exp Agric 44:299–307. doi:10.1071/EA03076

    Article  Google Scholar 

  • Nakamoto T (1997) The distribution of maize roots as influenced by artificial vertical macropores. Jpn J Crop Sci 66:331–332. doi:10.1626/jcs.66.331

  • Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309. doi:10.1016/S1161-0301(99)00031-3

    Article  Google Scholar 

  • Peng Y, Li X, Li C (2012) Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field. PLoS ONE 7(5): e37726. doi:10.1371/journal.pone.0037726

  • Perkons U, Kautz T, Uteau D, Peth S, Geier V, Thomas K, Holz KL, Athmann M, Pude R, Köpke U (2014) Root-length densities of various annual crops following crops with contrasting root systems. Soil Tillage Res 137:50–57. doi:10.1016/j.still.2013.11.005

    Article  Google Scholar 

  • Pierret A, Moran CJ, Pankhurst CE (1999) Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 211:51–58. doi:10.1023/a:1004490800536

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D (2000) Mixed-effects models in S and S-PLUS. Springer, New York, pp 3–52. doi:10.1007/b98882

    Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Stewart JB, Moran CJ, Wood JT (1999) Macropore sheath: quantification of plant root and soil macropore association. Plant Soil 211:59–67. doi:10.1023/A:1004405422847

    Article  CAS  Google Scholar 

  • Uksa M, Fischer D, Welzl G, Kautz T, Köpke U, Schloter M (2014) Community structure of prokaryotes and their functional potential in subsoils is more affected by spatial heterogeneity than by temporal variations. Soil Biol Biochem 75:197–201. doi:10.1016/j.soilbio.2014.04.018

    Article  CAS  Google Scholar 

  • Valentine TA, Hallett PD, Binnie K, Young MW, Squire GR, Hawes C, Bengough AG (2012) Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Ann Bot London 110:259–270. doi:10.1093/Aob/Mcs118

    Article  CAS  Google Scholar 

  • Veen BW, Vannoordwijk M, Dewilligen P, Boone FR, Kooistra MJ (1992) Root-soil contact of maize, as measured by a thin-section technique. III. Effects on shoot growth, nitrate and water-uptake efficiency. Plant Soil 139(1):131–138. doi:10.1007/Bf00012850

  • Vetterlein D, Kühn T, Kaiser K, Jahn R (2013) Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. Plant Soil 371:267–279. doi:10.1007/s11104-013-1680-6

    Article  CAS  Google Scholar 

  • Volkmar KM (1996) Effects of biopores on the growth and N-uptake of wheat at three levels of soil moisture. Can J Soil Sci 76:453–458. doi:10.1007/s00248-012-0132-9

    Article  CAS  Google Scholar 

  • White JG, Scott TW (1991) Effects of perennial forage-legume living mulches on no-till winter wheat and rye. Field Crop Res 28:135–148. doi:10.1016/0378-4290(91)90079-B

    Article  Google Scholar 

  • Wuest SB (2001) Soil biopore estimation: effects of tillage, nitrogen, and photographic resolution. Soil Tillage Res 62:111–116. doi:10.1016/s0167-1987(01)00218-5

    Article  Google Scholar 

Download references

Acknowledgments

The experiment was financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the research unit DFG-FOR 1320. Special thanks shall go to Dr. Miriam Athmann for inspiring coordination of the project. The authors are indebted to technicians working at the Institute of Organic Agriculture (IOL) and Campus Klein-Altendorf, especially Henning Riebeling, Johannes Siebigteroth, and Stephan Doll.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eusun Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, E., Kautz, T., Perkons, U. et al. Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biol Fertil Soils 51, 847–856 (2015). https://doi.org/10.1007/s00374-015-1032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1032-1

Keywords

Navigation