Skip to main content
Log in

The Scattering Number of Strictly Chordal Graphs: Linear Time Determination

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The scattering number of a graph G was defined by Jung in 1978 as \(sc(G) = max \{ \omega (G - S) - |S|, S \subseteq V, \omega (G - S) \ne 1\}\) where \(\omega (G - S) \) is the number of connected components of the graph \(G-S\). It is a measure of vulnerability of a graph and it has a direct relationship with its toughness. Strictly chordal graphs, also known as block duplicate graphs, are a subclass of chordal graphs that includes block and 3-leaf power graphs. In this paper we present a linear time solution for the determination of the scattering number and scattering set of strictly chordal graphs. We show that, although the knowledge of the toughness of the strictly chordal graphs is helpful, it is far from sufficient to provide an immediate result for determining the scattering number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–228 (1973)

    Article  MathSciNet  Google Scholar 

  2. Woodall, D.R.: The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15, 225–255 (1973)

    Article  MathSciNet  Google Scholar 

  3. Jung, H.A.: On a class of posets and the corresponding comparability graphs. J. Combin. Theory Ser. B 24, 125–133 (1978)

    Article  MathSciNet  Google Scholar 

  4. Barefoot, C.A., Entringer, R., Swart, H.C.: Vulnerability in graphs - A comparative survey. J. Combin. Math. Combin. Comput. 1, 12–22 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Cozzens, M.B., Moazzami, D., Stueckle, S.: The tenacity of a graph. In: Alavi, Y., Schwenk, A. (eds.) Graph Theory, Combinatorics and Algorithms, Proceedings of 7th International Conference on the Theory and Applications of Graphs, pp. 1111–1122. Wiley, New York (1995)

  6. Li, Y., Zhang, S., Li, X.: Rupture degree of graphs. Int. J. Comput. Math. 82(7), 793–803 (2005)

    Article  MathSciNet  Google Scholar 

  7. Sundareswaran, R., Swaminathan, V.: Domination integrity in trees. Bull. Int. Math. Virtual Inst. 2, 153–161 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Li, F.W.: On isolated rupture degree of graphs. Util. Math. 96, 33–47 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Li, F.: Isolated rupture degree of trees and gear graphs. Neural Netw. World 3(15), 287–300 (2015)

    Article  Google Scholar 

  10. Zhang, S., Peng, S.: Relationships between scattering number and other vulnerability parameters. Int. J. Comput. Math. 81(3), 291–298 (2004)

    Article  MathSciNet  Google Scholar 

  11. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs - a survey. Graphs Combin. 22(1), 1–35 (2006)

    Article  MathSciNet  Google Scholar 

  12. Kratsch, D., Klots, T., Müller, H.: Computing the toughness and the scattering number for interval and other graphs. INRIA, Rapport de recherche 2237, pp. 1–22 (1994)

  13. Bauer, D., Hakimi, S.L., Schmeichel, E.: Recognizing tough graphs is NP-hard. Discrete Appl. Math. 28, 191–195 (1990)

    Article  MathSciNet  Google Scholar 

  14. Zhang, S., Li, X., Han, X.: Computing the scattering number of graphs. Int. J. Comput. Math. 79(2), 179–187 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kratsch, D., Klots, T., Müller, H.: Measuring the vulnerability for classes of intersection graphs. Discrete Appl. Math. 77, 259–270 (1997)

    Article  MathSciNet  Google Scholar 

  16. Deogun, J.S., Kratsch, C.D., Steiner, G.: 1-Tough cocomparability graphs are Hamiltonian. Discrete Math. 170, 99–106 (1997)

    Article  MathSciNet  Google Scholar 

  17. Broersma, H.: How tough is toughness?, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 117 (2015)

  18. Markenzon, L., Waga, C.F.E.M.: Toughness and Hamiltonicity of strictly chordal graphs. Int. Trans. Oper. Res. 26(2), 725–731 (2019)

    Article  MathSciNet  Google Scholar 

  19. Broersma, H., Fiala, F., Golovach, P.A., Kaiser, T., Paulusma, P., Proskurowski, P.: Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs. J. Graph Theory 79(4), 282–299 (2015)

    Article  MathSciNet  Google Scholar 

  20. Aslan, E., Kirlangic, A.: Computing the scattering number and the toughness for gear graphs. Bull. Int. Math. Virtual Inst. 1, 1–11 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Aslan, E.: A measure of graphs vulnerability: edge scattering number. Bull. Soc. Math. Banja Luka 4, 53–60 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Jurkiewicz, M.: Bounds on isolated scattering number. ANZIAM J. 62(CTAC2020), C72–C83 (2021)

    Article  Google Scholar 

  23. Li, F., Ye, Q., Sun, Y.: The isolated scattering number can be computed in polynomial time for interval graphs. ANZIAM J. 58(E), E81–E97 (2017)

    Article  Google Scholar 

  24. Li, F., Zhang, X., Broersma, H.: A polynomial algorithm for weighted scattering number in interval graphs. Discrete Appl. Math. 264, 118–124 (2019)

    Article  MathSciNet  Google Scholar 

  25. Golumbic, M.C., Peled, U.N.: Block duplicate graphs and a hierarchy of chordal graphs. Discrete Appl. Math. 124, 67–71 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kennedy, W.: Strictly chordal graphs and phylogenetic roots. Master Thesis, University of Alberta (2005)

  27. Brandstädt, A., Wagner, P.: Characterising \((k,\ell )\)-leaf powers. Discrete Appl. Math. 158, 110–122 (2010)

    Article  MathSciNet  Google Scholar 

  28. Harary, F.: A characterization of block graphs. Can. Math. Bull. 6(1), 1–6 (1963)

    Article  MathSciNet  Google Scholar 

  29. Blair, J.R.S.: The efficiency of AC graphs. Discrete Appl. Math. 44, 119–138 (1993)

    Article  MathSciNet  Google Scholar 

  30. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Inform. Process. Lett. 98, 133–138 (2006)

    Article  MathSciNet  Google Scholar 

  31. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root problems. Lecture Notes Comput. Sci. 3341, 389–401 (2004)

    Article  MathSciNet  Google Scholar 

  32. Markenzon, L., Waga, C.F.E.M.: Strictly interval graphs: characterization and linear time recognition. Electron. Notes Discrete Math. 52, 181–188 (2016)

    Article  MathSciNet  Google Scholar 

  33. Estrada, E., Benzi, M.: Core-satellite graphs: clustering, assortativity and spectral properties. Linear Algebra Appl. 517, 30–52 (2017)

    Article  MathSciNet  Google Scholar 

  34. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. IMA 56, pp. 1–29. Springer, New York (1993)

    Google Scholar 

  35. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Academic Press, New York (2004)

    MATH  Google Scholar 

  36. Beineke, L.W., Golumbic, M.C., Wilson, R.J. (eds.): Topics in Algorithmic Graph Theory. Cambridge University Press, New York (2021)

    MATH  Google Scholar 

  37. Markenzon, L., Pereira, P.R.C.: One-phase algorithm for the determination of minimal vertex separators of chordal graphs. Int. Trans. Oper. Res. 17, 683–690 (2010)

    Article  MathSciNet  Google Scholar 

  38. Markenzon, L., Waga, C.F.E.M.: New results on ptolemaic graphs. Discrete Appl. Math. 196, 135–140 (2015)

    Article  MathSciNet  Google Scholar 

  39. Markenzon, L.: Non-inclusion and other subclasses of chordal graphs. Discrete Appl. Math. 272, 43–47 (2020)

    Article  MathSciNet  Google Scholar 

  40. Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)

    Book  Google Scholar 

Download references

Acknowledgements

Partially supported by grant 304706/2017-5, CNPq, Brazil.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina F. E. M. Waga.

Ethics declarations

Conflict of interest

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markenzon, L., Waga, C.F.E.M. The Scattering Number of Strictly Chordal Graphs: Linear Time Determination. Graphs and Combinatorics 38, 102 (2022). https://doi.org/10.1007/s00373-022-02498-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02498-8

Keywords

Mathematics Subject Classification

Navigation