Skip to main content
Log in

Proportional Choosability of Complete Bipartite Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Proportional choosability is a list analogue of equitable coloring that was introduced in 2019. The smallest k for which a graph G is proportionally k-choosable is the proportional choice number of G, and it is denoted \(\chi _{pc}(G)\). In the first ever paper on proportional choosability, it was shown that when \(2 \le n \le m\), \(\max \{ n + 1, 1 + \lceil m / 2 \rceil \} \le \chi _{pc}(K_{n,m}) \le n + m - 1\). In this note we improve on this result by showing that \(\max \{ n + 1, \lceil n / 2 \rceil + \lceil m / 2 \rceil \} \le \chi _{pc}(K_{n,m}) \le n + m -1- \lfloor m/3 \rfloor\). In the process, we prove some new lower bounds on the proportional choice number of complete multipartite graphs. We also present several interesting open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We work under the assumption that a proper k-coloring has exactly k, possibly empty, color classes.

References

  1. Alon, N.: Choice numbers of graphs; a probabilistic approach. Comb. Probab. Comput. 1, 107–114 (1992)

    Article  MathSciNet  Google Scholar 

  2. Alon, N.: Degrees and choice numbers. Random Struct. Algor. 16, 364–368 (2000)

    Article  MathSciNet  Google Scholar 

  3. Erdős, P.: Problem 9. In: Fiedler, M. (ed) Theory of graphs and its applications, Proc. Sympos., Smolenice, 1963, Publ. House Czechoslovak Acad. Sci. Prague, 159. (1964)

  4. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congressus Numerantium 26, 125–127 (1979)

    MATH  Google Scholar 

  5. Fűredi, Z., Kantor, I.: List colorings with distinct list sizes, the case of complete bipartite graphs. J. Graph Theory 82(2), 218–227 (2016)

    Article  MathSciNet  Google Scholar 

  6. Hajnál, A., Szemerédi, E.: Proof of a conjecture of Erdős. In: Rényi, A., Sós, V.T. (eds.) Combinatorial theory and its applications, vol. II, pp. 601–623. North-Holland, Amsterdam (1970)

    Google Scholar 

  7. Hall, P.: On representation of subsets. J. Lond. Mat. Sc. 10, 26–30 (1935)

    Article  Google Scholar 

  8. Janson, S., Ruciński, A.: The infamous upper tail. Random Struct. Algor. 20, 317–342 (2002)

    Article  MathSciNet  Google Scholar 

  9. Kaul, H., Jacobson, S.H.: New global optima results for the Kauffman \(NK\) Model : handling dependency. Math. Programm. 108, 475–494 (2006). (Special issue on ‘Optimization under Uncertainty’)

    Article  MathSciNet  Google Scholar 

  10. Kaul, H., Mudrock, J., Pelsmajer, M.J., Reiniger, B.: Proportional choosability: a new list analogue of equitable coloring. Discrete Math. 342, 2371–2383 (2019)

    Article  MathSciNet  Google Scholar 

  11. Kaul, H., Mudrock, J., Pelsmajer, M.J., Reiniger, B.: A simple characterization of proportionally 2-choosable graphs. Graphs Combina. 36, 679–687 (2020)

    Article  MathSciNet  Google Scholar 

  12. Krivelevich, M., Nachmias, A.: Coloring complete bipartite graphs from random lists. Random Struct. Algor. 29, 436–449 (2006)

    Article  MathSciNet  Google Scholar 

  13. Kostochka, A.V., Pelsmajer, M.J., West, D.B.: A list analogue of equitable coloring. J. Graph Theory 44, 166–177 (2003)

    Article  MathSciNet  Google Scholar 

  14. Meyer, W.: Equitable coloring. Am. Math. Monthly 80, 920–922 (1973)

    Article  MathSciNet  Google Scholar 

  15. Mudrock, J.: On the list coloring problem and its equitable variants. Ph.D. Thesis, Illinois Institute of Technology, (2018)

  16. Mudrock, J.: A note on the DP-chromatic number of complete bipartite graphs. Discrete Math. 341, 3148–3151 (2018)

    Article  MathSciNet  Google Scholar 

  17. Mudrock, J., Chase, M., Kadera, I., Wagstrom, T.: A note on the equitable choosability of complete bipartite graphs, to appear in Discussiones Mathematicae Graph Theory

  18. Mudrock, J., Piechota, R., Shin, P., Wagstrom, T.: Proportional 2-choosability with a bounded palette, arXiv:1910.03418 (preprint). (2019)

  19. O’Donnell, P.: The choice number of \(K_{6,q}\). Rutgers University Mathematics Department, Camden (1995). (preprint)

    Google Scholar 

  20. Pemmaraju, S.V.: Equitable colorings extend Chernoff-Hoeffding bounds, pp. 285–296. Proceedings of the 5th International Workshop on Randomization and Approximation Techniques in Computer Science (APPROX-RANDOM 2001), (2001)

  21. Tucker, A.: Perfect graphs and an application to optimizing municipal services. SIAM Rev. 15, 585–590 (1973)

    Article  MathSciNet  Google Scholar 

  22. Vizing, V.G.: Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz. no. 29. Metody Diskret. Anal. v Teorii Kodovi Skhem 101, 3–10 (1976)

    Google Scholar 

  23. West, D.B.: Introduction to graph theory. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  24. West, D.B.: Combinatorial mathematics. Cambridge University Press, New York (2020)

    MATH  Google Scholar 

  25. Wu, C.-H.: On the equitable-coloring of the complete \(t\)-partite graphs, Master’s thesis. Tunghai University, Taiwan (1994)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hemanshu Kaul for many helpful conversations. The authors would also like to thank the anonymous referee for helpful comments on this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Mudrock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrock, J.A., Hewitt, J., Shin, P. et al. Proportional Choosability of Complete Bipartite Graphs. Graphs and Combinatorics 37, 381–392 (2021). https://doi.org/10.1007/s00373-020-02255-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02255-9

Keywords

Mathematics Subject Classification

Navigation