Skip to main content
Log in

Cospectral Bipartite Graphs with the Same Degree Sequences but with Different Number of Large Cycles

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Finding the multiplicity of cycles in bipartite graphs is a fundamental problem of interest in many fields including the analysis and design of low-density parity-check (LDPC) codes. Recently, Blake and Lin computed the number of shortest cycles (g-cycles, where g is the girth of the graph) in a bi-regular bipartite graph, in terms of the degree sequences and the spectrum (eigenvalues of the adjacency matrix) of the graph (Blake and Lin in IEEE Trans Inf Theory 64(10): 6526–6535, 2018). This result was subsequently extended in Dehghan and Banihashemi (IEEE Trans Inf Theory 65(6):3778–3789, 2019) to cycles of length \(g+2, \ldots , 2g-2\), in bi-regular bipartite graphs, as well as 4-cycles and 6-cycles in irregular and half-regular bipartite graphs, with \(g \ge 4\) and \(g \ge 6\), respectively. In this paper, we complement these positive results with negative results demonstrating that the information of the degree sequences and the spectrum of a bipartite graph is, in general, insufficient to count (a) the i-cycles, \(i \ge 2g\), in bi-regular graphs, (b) the i-cycles for any \(i > g\), regardless of the value of g, and g-cycles for \(g \ge 6\), in irregular graphs, and (c) the i-cycles for any \(i > g\), regardless of the value of g, and g-cycles for \(g \ge 8\), in half-regular graphs. To obtain these results, we construct counter-examples using the Godsil–McKay switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The cycles are counted using a Matlab program by Jeff Howbert [14]. This program counts all cycles in a simple undirected graph up to a specified size limit, using a backtracking algorithm.

  2. Note that if t is selected to be an even number, the graphs \(G_1\) and \(G_2\) will not be half-regular.

References

  1. Abiad, A., Brouwer, A.E., Haemers, W.H.: Godsil–McKay switching and isomorphism. Electron. J. Linear Algebra 28, 4–11 (2015)

    Article  MathSciNet  Google Scholar 

  2. Asvadi, R., Banihashemi, A.H., Ahmadian-Attari, M.: Lowering the error floor of LDPC codes using cyclic liftings. IEEE Trans. Inf. Theory 57(4), 2213–2224 (2011)

    Article  MathSciNet  Google Scholar 

  3. Blake, I.F., Lin, S.: On short cycle enumeration in biregular bipartite graphs. IEEE Trans. Inf. Theory 64(10), 6526–6535 (2018)

    Article  MathSciNet  Google Scholar 

  4. Blázsik, Z.L., Cummings, J., Haemers, W.H.: Cospectral regular graphs with and without a perfect matching. Discrete Math. 338(3), 199–201 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York (1976)

    Book  Google Scholar 

  6. Brouwer, A.E., Haemers, W.H.: Eigenvalues and perfect matchings. Linear Algebra Appl. 395, 155–162 (2005)

    Article  MathSciNet  Google Scholar 

  7. Dehghan, A., Banihashemi, A.H.: On the Tanner graph cycle distribution of random LDPC, random protograph-based LDPC, and random quasi-cyclic LDPC code ensembles. IEEE Trans. Inf. Theory 64(6), 4438–4451 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dehghan, A., Banihashemi, A.H.: On computing the multiplicity of cycles in bipartite graphs using the degree distribution and the spectrum of the graph. IEEE Trans. Inf. Theory 65(6), 3778–3789 (2019)

    Article  MathSciNet  Google Scholar 

  9. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)

    MATH  Google Scholar 

  10. Godsil, C.D., McKay, B.D.: Constructing cospectral graphs. Aeq. Math. 25(2–3), 257–268 (1982)

    Article  MathSciNet  Google Scholar 

  11. Halford, T.R., Chugg, K.M.: An algorithm for counting short cycles in bipartite graphs. IEEE Trans. Inf. Theory 52(1), 287–292 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hashemi, Y., Banihashemi, A.H.: New characterization and efficient exhaustive search algorithm for leafless elementary trapping sets of variable-regular LDPC codes. IEEE Trans. Inf. Theory 62(12), 6713–6736 (2016)

    Article  MathSciNet  Google Scholar 

  13. Hashemi, Y., Banihashemi, A.H.: Characterization of elementary trapping sets in irregular LDPC codes and the corresponding efficient exhaustive search algorithms. IEEE Trans. Inf. Theory 64(5), 3411–3430 (2018)

    Article  MathSciNet  Google Scholar 

  14. Howbert, J.: Count all cycles in simple undirected graph, version 1.2. https://www.mathworks.com/matlabcentral/fileexchange/29438-count-all-cycles-in-simple-undirected-graph. Accessed 29 Aug 2011

  15. Hu, X.-Y., Eleftheriou, E., Arnold, D.M.: Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans. Inf. Theory 51(1), 386–398 (2005)

    Article  MathSciNet  Google Scholar 

  16. Hui, A.M.W., Rodrigues, B.G.: Switched graphs of some strongly regular graphs related to the symplectic graph. Des. Codes Cryptogr. 86(1), 179–194 (2018)

    Article  MathSciNet  Google Scholar 

  17. Karimi, M., Banihashemi, A.H.: Efficient algorithm for finding dominant trapping sets of LDPC codes. IEEE Trans. Inf. Theory 58(11), 6942–6958 (2012)

    Article  MathSciNet  Google Scholar 

  18. Karimi, M., Banihashemi, A.H.: On the girth of quasi-cyclic protograph LDPC codes. IEEE Trans. Inf. Theory 59(7), 4542–4552 (2013)

    Article  MathSciNet  Google Scholar 

  19. Karimi, M., Banihashemi, A.H.: On characterization of elementary trapping sets of variable-regular LDPC codes. IEEE Trans. Inf. Theory 60(9), 5188–5203 (2014)

    Article  MathSciNet  Google Scholar 

  20. Karimi, M., Banihashemi, A.H.: Message-passing algorithms for counting short cycles in a graph. IEEE Trans. Commun. 61(2), 485–495 (2013)

    Article  Google Scholar 

  21. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  22. Langberg, M., Vilenchik, D.: Constructing cospectral graphs via a new form of graph product. Linear Multilinear Algebra 66(9), 1838–1852 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, M., Yuan, Y., You, L., Chen, Z.: Which cospectral graphs have same degree sequences. Discrete Math. 341(11), 2969–2976 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lu, H.: Regular graphs, eigenvalues and regular factors. J. Graph Theory 69(4), 349–355 (2012)

    Article  MathSciNet  Google Scholar 

  25. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156(1–3), 291–298 (1996)

    Article  MathSciNet  Google Scholar 

  26. Munemasa, A.: Godsil–McKay switching and twisted Grassmann graphs. Des. Codes Cryptogr. 84(1–2), 173–179 (2017)

    Article  MathSciNet  Google Scholar 

  27. Omidi, G.R.: On integral graphs with few cycles. Graphs Combin. 25(6), 841–849 (2009)

    Article  MathSciNet  Google Scholar 

  28. Richardson, T.J., Urbanke, R.L.: The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 47(2), 599–618 (2001)

    Article  MathSciNet  Google Scholar 

  29. Saeedi, H., Banihashemi, A.H.: New sequences of capacity achieving LDPC code ensembles over the binary erasure channel. IEEE Trans. Inf. Theory 56(12), 6332–6346 (2010)

    Article  MathSciNet  Google Scholar 

  30. Stevanović, D.: Two spectral characterizations of regular, bipartite graphs with five eigenvalues. Linear Algebra Appl. 435(10), 2612–2625 (2011)

    Article  MathSciNet  Google Scholar 

  31. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(5), 533–547 (1981)

    Article  MathSciNet  Google Scholar 

  32. van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum? Linear Algebra Appl. 373, 241–272 (2003)

    Article  MathSciNet  Google Scholar 

  33. Xiao, H., Banihashemi, A.H.: Error rate estimation of low-density parity-check codes on binary symmetric channels using cycle enumeration. IEEE Trans. Commun. 57(6), 1550–1555 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented in part at ISTC 2018, Hong Kong. This research was supported by NSERC Discovery Grant 217239-2013-RGPIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, A., Banihashemi, A.H. Cospectral Bipartite Graphs with the Same Degree Sequences but with Different Number of Large Cycles. Graphs and Combinatorics 35, 1673–1693 (2019). https://doi.org/10.1007/s00373-019-02110-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-019-02110-6

Keywords

Navigation