Skip to main content
Log in

Geometric Biplane Graphs I: Maximal Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We study biplane graphs drawn on a finite planar point set \(S\) in general position. This is the family of geometric graphs whose vertex set is \(S\) and can be decomposed into two plane graphs. We show that two maximal biplane graphs—in the sense that no edge can be added while staying biplane—may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum number of edges and the largest maximum connectivity over \(n\)-element point sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We note that Eppstein’s algorithm does not explicitly construct the intersection graph \(G_X\), which may have \(\Omega (m^2)\) edges.

References

  1. Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. Theory Appl. 40(3), 220–230 (2008)

    Article  MATH  Google Scholar 

  2. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. Ann. Discret. Math. 12, 9–12 (1982)

    MATH  Google Scholar 

  3. Al-Jubeh, M., Barequet, G., Ishaque, M., Souvaine, D.L., Tóth, C.D., Winslow, A.: Constrained tri-connected planar straight line graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 49–70. Springer, New York (2013)

    Chapter  Google Scholar 

  4. Al-Jubeh, M., Ishaque, M., Rédei, K., Souvaine, D.L., Tóth, C.D., Valtr, P.: Augmenting the edge connectivity of planar straight line graphs to three. Algorithmica 61(4), 971–999 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barnette, D.: On generating planar graphs. Discret. Math. 7, 199–208 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beineke, L.W.: Biplanar Graphs: a survey. Comput. Math. Appl. 34(11), 1–8 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brinkmann, G., Goedgebeur, J., McKay, B.D.: The generation of fullerenes. J. Chem. Inf. Model. 52(11), 2910–2918 (2012)

    Article  Google Scholar 

  8. Chartrand, G., Lesniak, L.: Graphs and Digraphs. Chapman and Hall/CRC, Boca Raton (2005)

    MATH  Google Scholar 

  9. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Doslic, T.: Cyclical edge-connectivity of fullerene graphs and \((k, 6)\)-cages. J. Math. Chem. 33, 103–112 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eades, P., Hong, S.-H., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Proceedings of 18th COCOON, LNCS 7434, pp. 335–346. Springer, New York (2012)

  12. Eppstein, D.: Testing bipartiteness of geometric intersection graphs. ACM Trans. Algorithms 5(2), article 15 (2009)

    Article  MathSciNet  Google Scholar 

  13. Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)

    MATH  Google Scholar 

  14. García, A., Hurtado, F., Korman, M., Matos, I., Saumell, M., Silveira, R.I., Tejel, J., Tóth, C.D.: Geometric biplane graphs I: maximal graphs. Extended abstract. In: Proceedings of Mexican conference on discrete mathematics and computational geometry, Oaxaca, México, pp. 123–134 (2013)

  15. García, A., Hurtado, F., Korman, M., Matos, I., Saumell, M., Silveira, R.I., Tejel, J., Tóth, C.D.: Geometric biplane graphs II: graph augmentation. Extended abstract. In: Proceedings of Mexican conference on discrete mathematics and computational geometry, Oaxaca, México, pp. 223–234 (2013)

  16. Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs. J. AMS 22(2), 309–329 (2009)

    MATH  Google Scholar 

  17. Hoffmann, M., Schulz, A., Sharir, M., Sheffer, A., Tóth, C.D., Welzl, E.: Counting plane graphs: flippability and its applications. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 303–326. Springer, New York (2013)

    Chapter  Google Scholar 

  18. Hurtado, F., Tóth, C.D.: Plane geometric graph augmentation: a generic perspective. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 327–354. Springer, New York (2013)

    Chapter  Google Scholar 

  19. Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. Theory Appl. 13, 161–171 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. In: Proceedings of 16th graph drawing, LNCS 5417, pp. 302–312. Springer, New York (2009)

  21. Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs. Discret. Comput. Geom. 1, 201–217 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. J. Graph Algorithms Appl. 16(2), 599–628 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18(1), 1–74 (2011)

  24. Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. 33(3), 408–425 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

A. G., F. H., M. K., R.I. S. and J. T. were partially supported by ESF EUROCORES Programme EuroGIGA, CRP ComPoSe: Grant EUI-EURC-2011-4306, and by Project MINECO MTM2012-30951/FEDER. F. H., and R.I. S. were also supported by Project Gen. Cat. DGR 2009SGR1040. A. G. and J. T. were also supported by Project E58-DGA. M. K. was supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union. I. M. was supported by FEDER funds through COMPETE–Operational Programme Factors of Competitiveness, CIDMA and FCT within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. M. S. was supported by the Project NEXLIZ - CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget of the Czech Republic, and by ESF EuroGIGA Project ComPoSe as F.R.S.-FNRS—EUROGIGA NR 13604. R. S. was funded by Portuguese Funds through CIDMA (Center for Research and Development in Mathematics and Applications) and FCT (Fundação para a Ciência e a Tecnologia), within Project PEst-OE/MAT/UI4106/2014, and by FCT Grant SFRH/BPD/88455/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo García.

Additional information

A preliminary version of this paper has been presented at the Mexican Conference on Discrete Mathematics and Computational Geometry, Oaxaca, México, November 2013 [14].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, A., Hurtado, F., Korman, M. et al. Geometric Biplane Graphs I: Maximal Graphs. Graphs and Combinatorics 31, 407–425 (2015). https://doi.org/10.1007/s00373-015-1546-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1546-1

Keywords

Navigation