Skip to main content
Log in

Content-based image retrieval through fusion of deep features extracted from segmented neutrosophic using depth map

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The main challenge of content-based image retrieval systems is the difference between how images are described using algorithms and how humans understand the semantic concepts of an image. To overcome this challenge, many image retrieval methods have focused on scenarios that emphasize important regions of an image. However, losing part of the semantic features of an image is a problem that also exists in these approaches. Therefore, this article introduces a method for image retrieval using the fusion of deep features on a segmented neutrosophic set with the help of the image depth map. By transferring the original image to the neutrosophic domain, the image is decomposed into three levels: true, false, and indeterminate. True and false images have different representations of image brightness. The indeterminate image represents the boundary between the true and false images. It is also a representation of the edges in the image. Convolutional layers of deep neural networks are sensitive to changes in image brightness when extracting feature maps. For this reason, the extracted features from the true and false images are different from each other and can be considered as complementary to each other. In the second step, the image depth map is estimated using a vision transformer. Then the estimated depth map is binarized using a predefined threshold. By applying the binarized depth map to the neutrosophic domain, objects in near and far regions are classified. Effective features of each region are extracted using a pre-trained deep neural network, VGG-16. Important features from each group of images are selected using the Boruta-Shap algorithm. Finally, to reduce redundancy and unify the extracted features, feature fusion is performed in two stages, resulting in the final feature vector for each image. Experimental results confirm that extracting semantic and content features from different regions of an image using the proposed method leads to improved retrieval results and reduces semantic gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The public dataset that supports the findings of this study are available in references [43, 44].

References

  1. Bai, C., Chen, J., Huang, L., Kpalma, K., Chen, S.: Saliency-based multi-feature modeling for semantic image retrieval. J. Vis. Commun. Image Represent. 50(199), 204 (2018). https://doi.org/10.1016/J.JVCIR.2017.11.021

    Article  Google Scholar 

  2. Wei, X.S., Luo, J.H., Wu, J., Zhou, Z.H.: Selective convolutional descriptor Aggregation for fine-grained image retrieval. IEEE Trans. Image Process. 26(6), 2868–2881 (2017). https://doi.org/10.1109/TIP.2017.2688133

    Article  MathSciNet  Google Scholar 

  3. Wang, H., Li, Z., Li, Y., Gupta, B.B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recogn. Lett. 130, 64–72 (2020). https://doi.org/10.1016/J.PATREC.2018.08.010

    Article  Google Scholar 

  4. Pang, S., Zhu, J., Wang, J., Ordonez, V., Xue, J.: Building discriminative CNN image representations for object retrieval using the replicator equation. Pattern Recogn. 83, 150–160 (2018). https://doi.org/10.1016/J.PATCOG.2018.05.010

    Article  Google Scholar 

  5. Pradhan, J., Pal, A.K., Banka, H.: A CBIR system based on saliency driven local image features and multi orientation texture features. J. Vis. Commun. Image Represent. 83, 103396 (2022). https://doi.org/10.1016/J.JVCIR.2021.103396

    Article  Google Scholar 

  6. Lu, F., Liu, G.H.: Image retrieval using object semantic aggregation histogram. Cogn. Comput. (2023). https://doi.org/10.1007/S12559-023-10143-6/METRICS

    Article  Google Scholar 

  7. Alsmadi, M.K.: Content-based image retrieval using color, shape and texture descriptors and features. Arab. J. Sci. Eng. 45(4), 3317–3330 (2020). https://doi.org/10.1007/S13369-020-04384-Y

    Article  Google Scholar 

  8. Eisa, M.: A new approach for enhancing image retrieval using neutrosophic sets. Int. J. Comput. Appl. 95(8), 12–20 (2014). https://doi.org/10.5120/16613-6453

    Article  Google Scholar 

  9. Dhar, S., Kundu, M.K.: Accurate multi-class image segmentation using weak continuity constraints and neutrosophic set. Appl. Soft Comput. 112, 107759 (2021). https://doi.org/10.1016/J.ASOC.2021.107759

    Article  Google Scholar 

  10. Datta, S., Chaki, N., Modak, B.: A novel technique for dental radiographic image segmentation based on neutrosophic logic. Decis. Anal. J. 7, 100223 (2023). https://doi.org/10.1016/J.DAJOUR.2023.100223

    Article  Google Scholar 

  11. Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Do semantic parts emerge in convolutional neural networks? Int. J. Comput. Vision 126(5), 476–494 (2018). https://doi.org/10.1007/S11263-017-1048-0/FIGURES/15

    Article  MathSciNet  Google Scholar 

  12. Khan, S., Rahmani, H., Shah, S.A.A., Bennamoun, M.: A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 8(1), 1–207 (2018). https://doi.org/10.2200/S00822ED1V01Y201712COV015

    Article  Google Scholar 

  13. Dong, R., Liu, M., Li, F.: Multilayer convolutional feature aggregation algorithm for image retrieval. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/9794202

    Article  Google Scholar 

  14. Zhan, Z., Zhou, G., Yang, X.: A method of hierarchical image retrieval for real-time photogrammetry based on multiple features. IEEE Access 8, 21524–21533 (2020). https://doi.org/10.1109/ACCESS.2020.2969287

    Article  Google Scholar 

  15. Bai, C., Huang, L., Pan, X., Zheng, J., Chen, S.: Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 303, 60–67 (2018). https://doi.org/10.1016/J.NEUCOM.2018.04.034

    Article  Google Scholar 

  16. Mohite, N.B., Gonde, A.B.: Deep features based medical image retrieval. Multimed. Tools Appl. 81(8), 11379–11392 (2022). https://doi.org/10.1007/S11042-022-12085-X

    Article  Google Scholar 

  17. Gkelios, S., Sophokleous, A., Plakias, S., Boutalis, Y., Chatzichristofis, S.A.: Deep convolutional features for image retrieval. Expert Syst. Appl. 177, 114940 (2021). https://doi.org/10.1016/J.ESWA.2021.114940

    Article  Google Scholar 

  18. Sezavar, A., Farsi, H., Mohamadzadeh, S.: Content-based image retrieval by combining convolutional neural networks and sparse representation. Multimed. Tools Appl. 78(15), 20895–20912 (2019). https://doi.org/10.1007/S11042-019-7321-1

    Article  Google Scholar 

  19. Huang, L., Bai, C., Lu, Y., Zhang, S., Chen, S.: Unsupervised adversarial image retrieval. Multimed. Syst. 28(2), 673–685 (2021). https://doi.org/10.1007/S00530-021-00866-7

    Article  Google Scholar 

  20. Zeiler, M.D., and Fergus, R.: Visualizing and Understanding Convolutional Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013. Computer Vision–ECCV, vol. 8689(PART 1), pp. 818–833. (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  21. Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings. (2015)

  22. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07–12-June, pp. 1–9. (2015). https://doi.org/10.1109/CVPR.2015.7298594

  23. He, K., Zhang, X., Ren, S., & Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, pp. 770–778. (2016). https://doi.org/10.1109/CVPR.2016.90

  24. Mopuri, K. R., & Babu, R. V.: Object level deep feature pooling for compact image representation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015-October, pp. 62–70. (2015). https://doi.org/10.1109/CVPRW.2015.7301273

  25. Zhang, B., Wang, Q., Lu, X., Wang, F., Li, P.: Locality-constrained affine subspace coding for image classification and retrieval. Pattern Recogn. 100, 107167 (2020). https://doi.org/10.1016/J.PATCOG.2019.107167

    Article  Google Scholar 

  26. Liu, G.-H., Li, Z.-Y., Yang, J.-Y., Zhang, D.: Exploiting sublimated deep features for image retrieval. Pattern Recognit. (2023). https://doi.org/10.1016/J.PATCOG.2023.110076

    Article  Google Scholar 

  27. Wang, X., Zheng, Z., He, Y., Yan, F., Zeng, Z., Yang, Y.: Progressive local filter pruning for image retrieval acceleration. IEEE Trans. Multimedia (2023). https://doi.org/10.1109/TMM.2023.3256092

    Article  Google Scholar 

  28. Wang, Y.W., Liu, G.H., Deng, Q.L.: Aggregating deep features of multi-CNN models for image retrieval. Neural Process. Lett. (2023). https://doi.org/10.1007/S11063-023-11297-Y/FIGURES/10

    Article  Google Scholar 

  29. Lee, T., Yoon, Y., Chun, C., Ryu, S.: CNN-based road-surface crack detection model that responds to brightness changes. Electronics 10(12), 1402 (2021). https://doi.org/10.3390/electronics10121402

    Article  Google Scholar 

  30. Li, Y., Luo, F., Xiao, C.: Self-supervised coarse-to-fine monocular depth estimation using a lightweight attention module. Comput. Vis. Med. 8(4), 631–647 (2022). https://doi.org/10.1007/s41095-022-0279-3

    Article  Google Scholar 

  31. Jain, A., Muthuganapathy, R., and Ramani, K.: Content-based image retrieval using shape and depth from an engineering database. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4842 LNCS(PART 2), pp. 255–264. (2007). https://doi.org/10.1007/978-3-540-76856-2_25/COVER

  32. Rahman, M., Oh, J., Tavanapong, W., and C. de Groen, P.: Content based image retrieval using depth maps for colonoscopy images, pp. 301–308. (2023). https://doi.org/10.5220/0011749100003414

  33. Qiao, Y., Jiao, L., Yang, S., Hou, B.: A Novel segmentation based depth map up-sampling. IEEE Trans. Multimed. 21(1), 1–14 (2019). https://doi.org/10.1109/TMM.2018.2845699

    Article  Google Scholar 

  34. Smarandache, F.: A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability, pp. 1–141. American Research Press, Champaign (1999)

    Google Scholar 

  35. Ranftl, R., Bochkovskiy, A., & Koltun, V.: Vision Transformers for Dense Prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp.12159–12168. (2021). https://doi.org/10.1109/ICCV48922.2021.01196

  36. [PDF] Single-Image Depth Perception in the Wild|Semantic Scholar. (n.d.)

  37. Simonyan, K., & Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, arXiv:1409.1556. (2014)

  38. Ji, P., Li, R., Bhanu, B., Xu, Y.: MonoIndoor: towards good practice of self-supervised monocular depth estimation for indoor environments. IEEE/CVF Int. Conf. Comput. Vis. (ICCV) 2021, 12767–12776 (2021). https://doi.org/10.1109/ICCV48922.2021.01255

    Article  Google Scholar 

  39. Aich, S., Vianney, J. M. U., Islam, M. A., Kaur, M., and Liu, B.: Bidirectional attention network for monocular depth estimation. In: Proceedings - IEEE International Conference on Robotics and Automation, 2021-May, pp. 11746–11752. (2021). https://doi.org/10.1109/ICRA48506.2021.9560885

  40. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1623–1637 (2022). https://doi.org/10.1109/TPAMI.2020.3019967

    Article  Google Scholar 

  41. Kursa, M.B., Rudnicki, W.R.: Feature selection with the boruta package. J. Stat. Softw. 36(11), 1–13 (2010). https://doi.org/10.18637/JSS.V036.I11

    Article  Google Scholar 

  42. Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., Lee, S.-I.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020). https://doi.org/10.1038/s42256-019-0138-9

    Article  Google Scholar 

  43. Taheri, F., Rahbar, K., Salimi, P.: Effective features in content-based image retrieval from a combination of low-level features and deep Boltzmann machine. Multimed. Tools Appl. 2022, 1–24 (2022). https://doi.org/10.1007/S11042-022-13670-W

    Article  Google Scholar 

  44. Janssens, B., Bogaert, M., Maton, M.: Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents. Ann. Op. Res. (2022). https://doi.org/10.1007/S10479-021-04476-4/TABLES/10

    Article  Google Scholar 

  45. Ghosh, I., Chaudhuri, T.D.: Integrating Navier-Stokes equation and neoteric iForest-BorutaShap-Facebook’s prophet framework for stock market prediction: an application in Indian context. Expert Syst. Appl. 210, 118391 (2022). https://doi.org/10.1016/J.ESWA.2022.118391

    Article  Google Scholar 

  46. Unar, S., Wang, X., Wang, C., Wang, Y.: A decisive content based image retrieval approach for feature fusion in visual and textual images. Knowl.-Based Syst. 179, 8–20 (2019). https://doi.org/10.1016/J.KNOSYS.2019.05.001

    Article  Google Scholar 

  47. Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (2007). https://doi.org/10.1109/CVPR.2007.383172

  48. Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. (2008). https://doi.org/10.1109/CVPR.2008.4587635

  49. Zhou, Z., Wang, X., Li, C., Zeng, M., Li, Z.: Adaptive deep feature aggregation using Fourier transform and low-pass filtering for robust object retrieval. J. Vis. Commun. Image Represent. 72, 102860 (2020). https://doi.org/10.1016/J.JVCIR.2020.102860

    Article  Google Scholar 

  50. Zhou, Y., Fan, H., Gao, S., Yang, Y., Zhang, X., Li, J., and Guo, Y.: Retrieval and Localization with Observation Constraints. In: Proceedings-IEEE International Conference on Robotics and Automation, 2021-May, pp. 5237–5244. (2021). https://doi.org/10.1109/ICRA48506.2021.9560987

  51. Lu, Z., Liu, G.H., Lu, F., Zhang, B.J.: Image retrieval using dual-weighted deep feature descriptor. Int. J. Mach. Learn. Cybern (2023). https://doi.org/10.1007/S13042-022-01654-Z/TABLES/1

    Article  Google Scholar 

  52. Liu, G.H., Yang, J.Y.: Exploiting deep textures for image retrieval. Int. J. Mach. Learn. Cybern. 14(2), 483–494 (2023). https://doi.org/10.1007/S13042-022-01645-0/FIGURES/7

    Article  Google Scholar 

  53. Lu, F., Liu, G.H.: Image retrieval using contrastive weight aggregation histograms. Digit. Signal Process. 123, 103457 (2022). https://doi.org/10.1016/J.DSP.2022.103457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FT contributed to conceptualization, methodology, visualization, software, validation, writing—original draft, read and approved the final manuscript. KR contributed to conceptualization, writing—review & editing, validation, project administration, supervision, read and approved the final manuscript. ZB contributed to analysis, writing—review & editing, and read and approved the final manuscript.

Corresponding author

Correspondence to Kambiz Rahbar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval and informed consent

Ethics approval not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, F., Rahbar, K. & Beheshtifard, Z. Content-based image retrieval through fusion of deep features extracted from segmented neutrosophic using depth map. Vis Comput (2024). https://doi.org/10.1007/s00371-024-03335-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-024-03335-0

Keywords

Navigation