Skip to main content
Log in

PMGAN: pretrained model-based generative adversarial network for text-to-image generation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Text-to-image generation is a challenging task. Although diffusion models can generate high-quality images of complex scenes, they sometimes suffer from a lack of realism. Additionally, there is often a large diversity among images generated from different text with the same semantics. Furthermore, the generation of details is sometimes insufficient. Generative adversarial networks can generate realism images. These images are consistent with the text descriptions. And the networks can generate content-consistent images. In this paper, we argue that generating images that are more consistent with the text descriptions is more important than generating higher-quality images. Therefore, this paper proposes the pretrained model-based generative adversarial network (PMGAN). PMGAN utilizes multiple pre-trained models in both generator and discriminator. Specifically, in the generator, the deep attentional multimodal similarity model text encoder extracts word and sentence embeddings from the input text, and the contrastive language-image pre-training (CLIP) text encoder extracts initial image features from the input text. In the discriminator, a pre-trained CLIP image encoder extracts image features from the input image. The CLIP encoder can map text and images into a common semantic space, which is beneficial to generate high-quality images. Experimental results show that compared to the state-of-the-art methods, PMGAN achieves better scores on both inception score and Fréchet inception distance and can produce higher quality images while maintaining greater consistency with text descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during and analyzed during the current study are available in the CUB-200-2011 repository, http://www.vision.caltech.edu/datasets/cub_200_2011/, and the COCO 2014 repository, https://cocodataset.org/#download.

References

  1. Chang, H., Zhang, H., Barber, J., et al.: Muse: Text-to-image generation via masked generative transformers (2023). arXiv:2301.00704

  2. Ding, M., Yang, Z., Hong, W., et al.: Cogview: mastering text-to-image generation via transformers. Adv. Neural. Inf. Process. Syst. 34, 19822–19835 (2021)

    Google Scholar 

  3. Ding, M., Zheng, W., Hong, W., et al.: Cogview2: faster and better text-to-image generation via hierarchical transformers. Adv. Neural. Inf. Process. Syst. 35, 16890–16902 (2022)

    Google Scholar 

  4. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

  5. Gu, S., Chen, D., Bao, J., et al.: Vector quantized diffusion model for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706 (2022)

  6. Kang, M., Zhu, J.Y,. Zhang, R., et al.: Scaling up gans for text-to-image synthesis. arXiv:2303.05511 (2023)

  7. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

  8. Li, B., Torr, P.H., Lukasiewicz, T.: Memory-driven text-to-image generation. arXiv:2208.07022 (2022)

  9. Li, X., Du, Z., Huang, Y., et al.: A deep translation (gan) based change detection network for optical and sar remote sensing images. ISPRS J. Photogramm. Remote. Sens. 179, 14–34 (2021)

    Article  Google Scholar 

  10. Lin, T.Y., Maire, M., Belongie, S., et al.: Microsoft coco: Common objects in context. In: European Conference on Computer Vision (ECCV), Springer, pp. 740–755 (2014)

  11. Nichol, A., Dhariwal, P., Ramesh, A., et al.: Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv:2112.10741 (2021)

  12. Qiao, T., Zhang, J., Xu, D., et al.: Mirrorgan: Learning text-to-image generation by redescription. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1505–1514 (2019)

  13. Radford, A., Kim, J.W., Hallacy, C., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, PMLR, pp. 8748–8763 (2021)

  14. Raffel, C., Shazeer, N., Roberts, A., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  15. Ramesh, A., Pavlov, M., Goh, G., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, PMLR, pp. 8821–8831 (2021)

  16. Ramesh, A., Dhariwal, P., Nichol, A., et al.: Hierarchical text-conditional image generation with clip latents. arXiv:2204.06125 1(2) (2022)

  17. Reed, S., Akata, Z., Yan, X., et al.: Generative adversarial text to image synthesis. In: International conference on machine learning, PMLR, pp. 1060–1069 (2016)

  18. Rombach, R., Blattmann, A., Lorenz, D., et al.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

  19. Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Saharia, C., Chan, W., Saxena, S., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)

    Google Scholar 

  21. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

  23. Tao, M., Tang, H., Wu, F., et al.: Df-gan: A simple and effective baseline for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16515–16525 (2022)

  24. Tao, M., Bao, B.K., Tang, H., et al.: Galip: Generative adversarial clips for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14214–14223 (2023)

  25. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6309–6318 (2017)

  26. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  27. Wah, C., Branson, S., Welinder, P., et al.: The caltech-ucsd birds-200-2011 dataset. California Institute of Technology (2011)

  28. Wang, S., Gao, Z., Liu, D.: Swin-gan: generative adversarial network based on shifted windows transformer architecture for image generation. Vis. Comput. 39(12), 6085–6095 (2023)

    Article  Google Scholar 

  29. Xu, T., Zhang, P., Huang, Q., et al.: Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Rrecognition, pp. 1316–1324 (2018)

  30. Yu, J., Xu, Y., Koh, J.Y., et al.: Scaling autoregressive models for content-rich text-to-image generation. arXiv:2206.10789 2(3) (2022)

  31. Yuan, L., Chen, D., Hu, H.: Unsupervised object-level image-to-image translation using positional attention bi-flow generative network. IEEE Access 7, 30637–30647 (2019)

    Article  Google Scholar 

  32. Zhang, H., Xu, T., Li, H., et al.: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

  33. Zhang, H., Xu, T., Li, H., et al.: Stackgan++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1947–1962 (2018)

    Article  Google Scholar 

  34. Zhang, H., Koh, J.Y., Baldridge, J., et al.: Cross-modal contrastive learning for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 833–842 (2021)

  35. Zhang, Y., Han, S., Zhang, Z., et al.: Cf-gan: cross-domain feature fusion generative adversarial network for text-to-image synthesis. Vis. Comput. 39(4), 1283–1293 (2023)

    Google Scholar 

  36. Zhou, Y., Zhang, R., Chen, C., et al.: Towards language-free training for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17907–17917 (2022)

  37. Zhu, M., Pan, P., Chen, W., et al.: Dm-gan: Dynamic memory generative adversarial networks for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5802–5810 (2019)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers 61807002].

Funding

This work was supported by the National Natural Science Foundation of China [Grant Numbers 61807002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Yang, Y. & Xing, J. PMGAN: pretrained model-based generative adversarial network for text-to-image generation. Vis Comput (2024). https://doi.org/10.1007/s00371-024-03326-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-024-03326-1

Keywords

Navigation