Skip to main content
Log in

Ensemble graph Laplacian-based anomaly detector for hyperspectral imagery

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Hyperspectral anomaly detection is an alluring topic in hyperspectral image processing. As one of the most famous hyperspectral anomaly detection algorithms, Reed-Xiaoli detector is widely studied since it is understandable and easy to implement. However, the estimation of inverse covariance matrix may be time-consuming and easily corrupted by the anomalies. To solve these problems, we propose a novel ensemble graph Laplacian-based anomaly detector which comprises two main steps. Firstly, a multiple random sampling strategy is applied to improve the detection accuracies and robustness. Secondly, we can obtain multiple detection results through a graph Laplacian-based solution, and these results are further fused through ensemble learning. Experimental results on one simulated and two real hyperspectral datasets demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Zikiou, N., Lahdir, M., Helbert, D.: Support vector regression-based 3d-wavelet texture learning for hyperspectral image compression. Vis. Comput. 36(7), 1473–1490 (2020)

    Article  Google Scholar 

  2. Chang, C.-I., Chiang, S.-S.: Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 40(6), 1314–1325 (2002). https://doi.org/10.1109/TGRS.2002.800280

    Article  Google Scholar 

  3. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012). https://doi.org/10.1109/JSTARS.2012.2194696

    Article  Google Scholar 

  4. Wang, R., Nie, F., Wang, Z., He, F., Li, X.: Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image. IEEE Trans. Geosci. Remote Sens. 57(10), 7352–7364 (2019). https://doi.org/10.1109/TGRS.2019.2913004

    Article  Google Scholar 

  5. Liu, S., Marinelli, D., Bruzzone, L., Bovolo, F.: A review of change detection in multitemporal hyperspectral images: current techniques, applications, and challenges. IEEE Geosci. Remote Sens. Mag. 7(2), 140–158 (2019). https://doi.org/10.1109/MGRS.2019.2898520

    Article  Google Scholar 

  6. Stein, D.W.J., Beaven, S.G., Hoff, L.E., Winter, E.M., Schaum, A.P., Stocker, A.D.: Anomaly detection from hyperspectral imagery. IEEE Signal Process. Mag. 19(1), 58–69 (2002). https://doi.org/10.1109/79.974730

    Article  Google Scholar 

  7. Nasrabadi, N.M.: Hyperspectral target detection: an overview of current and future challenges. IEEE Signal Process. Mag. 31(1), 34–44 (2014). https://doi.org/10.1109/MSP.2013.2278992

    Article  Google Scholar 

  8. Qu, J., Du, Q., Li, Y., Tian, L., Xia, H.: Anomaly detection in hyperspectral imagery based on gaussian mixture model. IEEE Trans. Geosci. Remote Sens. 59(11), 9504–9517 (2021). https://doi.org/10.1109/TGRS.2020.3038722

    Article  Google Scholar 

  9. Cui, Y., Yan, L., Cao, Z., Liu, D.: Tf-blender: temporal feature blender for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8138–8147 (2021)

  10. Dua, Y., Singh, R.S., Kumar, V.: Compression of multi-temporal hyperspectral images based on RLS filter. Vis. Comput. 38, 65–75 (2020)

    Article  Google Scholar 

  11. Liu, D., Cui, Y., Tan, W., Chen, Y.: Sg-net: spatial granularity network for one-stage video instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9816–9825 (2021)

  12. Wang, W., Liang, J., Liu, D.: Learning equivariant segmentation with instance-unique querying. Preprint arXiv:2210.00911 (2022)

  13. Liu, D., Cui, Y., Yan, L., Mousas, C., Yang, B., Chen, Y.: Densernet: weakly supervised visual localization using multi-scale feature aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6101–6109 (2021)

  14. Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990). https://doi.org/10.1109/29.60107

    Article  Google Scholar 

  15. Li, W., Du, Q.: Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 53(3), 1463–1474 (2014)

    Article  Google Scholar 

  16. Wang, R., Hu, H., He, F., Nie, F., Cai, S., Ming, Z.: Self-weighted collaborative representation for hyperspectral anomaly detection. Signal Process. 177, 107718 (2020)

    Article  Google Scholar 

  17. Zhang, Y., Du, B., Zhang, L., Wang, S.: A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 54(3), 1376–1389 (2016). https://doi.org/10.1109/TGRS.2015.2479299

    Article  Google Scholar 

  18. Kwon, H., Nasrabadi, N.M.: Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 388–397 (2005). https://doi.org/10.1109/TGRS.2004.841487

    Article  Google Scholar 

  19. Carlotto, M.J.: A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 374–387 (2005). https://doi.org/10.1109/TGRS.2004.841481

    Article  Google Scholar 

  20. Molero, J.M., Garzon, E.M., Garcia, I., Plaza, A.: Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(2), 801–814 (2013). https://doi.org/10.1109/JSTARS.2013.2238609

    Article  Google Scholar 

  21. Verdoja, F., Grangetto, M.: Graph Laplacian for image anomaly detection. Mach. Vis. Appl. (2020). https://doi.org/10.1007/s00138-020-01059-4

    Article  Google Scholar 

  22. Zhang, C., Florencio, D.: Analyzing the optimality of predictive transform coding using graph-based models. IEEE Signal Process. Lett. 20(1), 106–109 (2013). https://doi.org/10.1109/LSP.2012.2230165

    Article  Google Scholar 

  23. Zhang, C., Florencio, D.: Analyzing the optimality of predictive transform coding using graph-based models. IEEE Signal Process. Lett. 20(1), 106–109 (2013)

    Article  Google Scholar 

  24. Grady, L.J., Polimeni, J.R.: Discrete Calculus: Applied Analysis on Graphs for Computational Science, vol. 3. Springer, London (2010)

    Book  Google Scholar 

  25. Romano, J.M., Rosario, D.: Random sampling statistical analysis for adaptive target-scale-invariant hyperspectral anomaly detection. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565, p. 656522. International Society for Optics and Photonics (2007)

  26. Kang, X., Zhang, X., Li, S., Li, K., Li, J., Benediktsson, J.A.: Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Trans. Geosci. Remote Sens. 55(10), 5600–5611 (2017). https://doi.org/10.1109/TGRS.2017.2710145

  27. Hou, Z., Li, W., Tao, R., Ma, P., Shi, W.: Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection. Sci. China Inf. Sci. 65(1), 1–12 (2022)

    Article  Google Scholar 

  28. Lu, Y., Zheng, X., Xin, H., Tang, H., Wang, R., Nie, F.: Ensemble and random collaborative representation-based anomaly detector for hyperspectral imagery. Signal Process. 204, 108835 (2023)

    Article  Google Scholar 

  29. Kerekes, J.: Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci. Remote Sens. Lett. 5(2), 251–255 (2008). https://doi.org/10.1109/LGRS.2008.915928

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang He.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Shen, D., Yan, S. et al. Ensemble graph Laplacian-based anomaly detector for hyperspectral imagery. Vis Comput 40, 201–209 (2024). https://doi.org/10.1007/s00371-023-02775-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02775-4

Keywords

Navigation