Skip to main content
Log in

A context- and level-aware feature pyramid network for object detection with attention mechanism

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

An object detection task includes classification and localization, which require large receptive field and high-resolution input, respectively. How to strike a balance between the two conflicting needs remains a difficult problem in this field. Fortunately, feature pyramid network (FPN) realizes the fusion of low-level and high-level features, which alleviates this dilemma to some extent. However, existing FPN-based networks overlooked the importance of features of different levels during fusion process. Their simple fusion strategies can easily cause overwritten of important information, leading to serious aliasing effect. In this paper, we propose an improved object detector based on context- and level-aware feature pyramid networks. Experiments have been conducted on mainstream datasets to validate the effectiveness of our network, where it exhibits superior performances than other state-of-the-art works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings will be shared once this paper has been accepted.

References

  1. Gupta, A.K., Seal, A., Prasad, M., Khanna, P.: Salient object detection techniques in computer vision—a survey. Entropy 22(10), 1174 (2020)

    Article  MathSciNet  Google Scholar 

  2. Zhang, W., Du, Y., Chen, Z., Deng, J., Liu, P.: Robust adaptive learning with Siamese network architecture for visual tracking. Vis. Comput. 37(5), 881–894 (2021)

    Article  Google Scholar 

  3. Gupta, A.K., Seal, A., Khanna, P., Krejcar, O., Yazidi, A.: AWKs: adaptive, weighted k-means-based superpixels for improved saliency detection. Pattern Anal. Appl. 24(2), 625–639 (2021)

    Article  Google Scholar 

  4. Zhang, J., Liu, Y., Guo, C., Zhan, J.: Optimized segmentation with image inpainting for semantic mapping in dynamic scenes. Appl. Intell. (2022). https://doi.org/10.1007/s10489-022-03487-3

    Article  Google Scholar 

  5. Wang, J., Yu, J., He, Z.: ARFP: a novel adaptive recursive feature pyramid for object detection in aerial images. Appl. Intell. 52, 12844–12859 (2022). https://doi.org/10.1007/s10489-021-03147-y

    Article  Google Scholar 

  6. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

  7. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  8. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

  9. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

  10. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

  11. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)

  12. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: AugFPN: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12595–12604 (2020)

  13. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer (2014)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  16. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

  17. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

  19. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

  20. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L., Yuan, Z., Wang, C., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

  21. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: Single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37 (2016). Springer

  22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  23. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: Foveabox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  MATH  Google Scholar 

  24. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

  25. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9657–9666 (2019)

  26. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  27. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13039–13048 (2021)

  28. Chen, Z., Huang, S., Tao, D.: Context refinement for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 71–86 (2018)

  29. Li, J., Wei, Y., Liang, X., Dong, J., Xu, T., Feng, J., Yan, S.: Attentive contexts for object detection. IEEE Trans. Multimed. 19(5), 944–954 (2016)

    Article  Google Scholar 

  30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018). https://doi.org/10.1109/CVPR.2018.00813

  31. Gupta, A.K., Seal, A., Khanna, P., Yazidi, A., Krejcar, O.: Gated contextual features for salient object detection. IEEE Trans. Instrum. Meas. 70, 1–13 (2021). https://doi.org/10.1109/TIM.2021.3064423

    Article  Google Scholar 

  32. Ghiasi, G., Lin, T.-Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7036–7045 (2019)

  33. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

  34. Gupta, A.K., Seal, A., Khanna, P., Herrera-Viedma, E., Krejcar, O.: ALMNet: adjacent layer driven multiscale features for salient object detection. IEEE Trans. Instrum. Meas. 70, 1–14 (2021). https://doi.org/10.1109/TIM.2021.3108503

    Article  Google Scholar 

  35. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

  36. Zhu, Y., Zhao, C., Guo, H., Wang, J., Zhao, X., Lu, H.: Attention CoupleNet: fully convolutional attention coupling network for object detection. IEEE Trans. Image Process. 28(1), 113–126 (2018)

    Article  MathSciNet  Google Scholar 

  37. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229. Springer (2020)

  38. Park, H., Paik, J.: Pyramid attention upsampling module for object detection. IEEE Access 10, 38742–38749 (2022). https://doi.org/10.1109/ACCESS.2022.3166928

    Article  Google Scholar 

  39. Jing, Y., Lin, L., Li, X., Li, T., Shen, H.: An attention mechanism based convolutional network for satellite precipitation downscaling over China. J. Hydrol. 613, 128388 (2022). https://doi.org/10.1016/j.jhydrol.2022.128388

    Article  Google Scholar 

  40. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  41. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

  42. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

  43. Li, Y., Zhou, S., Chen, H.: Attention-based fusion factor in FPN for object detection. Appl. Intell. 52, 1–10 (2022)

    Article  Google Scholar 

  44. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

  45. Leng, J., Liu, Y.: Context augmentation for object detection. Appl. Intell. 52(3), 2621–2633 (2022)

    Article  Google Scholar 

  46. Cao, J., Pang, Y., Zhao, S., Li, X.: High-level semantic networks for multi-scale object detection. IEEE Trans. Circuits Syst. Video Technol. 30(10), 3372–3386 (2019)

    Article  Google Scholar 

  47. Wang, C., Zhong, C.: Adaptive feature pyramid networks for object detection. IEEE Access 9, 107024–107032 (2021). https://doi.org/10.1109/ACCESS.2021.3100369

    Article  Google Scholar 

  48. Chen, X., Li, H., Wu, Q., Ngan, K.N., Xu, L.: High-quality R-CNN object detection using multi-path detection calibration network. IEEE Trans. Circuits Syst. Video Technol. 31(2), 715–727 (2020)

    Article  Google Scholar 

  49. Xie, J., Pang, Y., Nie, J., Cao, J., Han, J.: Latent feature pyramid network for object detection. IEEE Trans. Multimed. (2022). https://doi.org/10.1109/TMM.2022.3143707

  50. Luo, Y., Cao, X., Zhang, J., Guo, J., Shen, H., Wang, T., Feng, Q.: CE-FPN: enhancing channel information for object detection. Multimed. Tools Appl. 81, 1–20 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, Y. A context- and level-aware feature pyramid network for object detection with attention mechanism. Vis Comput 39, 6711–6722 (2023). https://doi.org/10.1007/s00371-022-02758-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02758-x

Keywords

Navigation