Skip to main content
Log in

Robust principal component analysis based on tensor train rank and Schatten p-norm

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

For a given data, robust principal component analysis (RPCA) aims to exactly recover the low-rank and sparse components from it. To date, as the convex relaxations of tensor rank, a number of tensor nuclear norms have been defined and applied to approximate the tensor rank because of their convexity. However, those relaxations may make the solution seriously deviate from the original solution for real-world data recovery. In this paper, we define the tensor Schatten p-norm based on tensor train rank and propose a new model for tensor robust principal component analysis (named \(\hbox {TT}S_{p}\)). We solve the proposed model iteratively by using the ADMM algorithm. In addition, a tensor augmentation tool called ket augmentation is introduced to convert lower-order tensors to higher-order tensors to exploit the low-TT-rank structure. We report higher PSNR and SSIM values in numerical experiments to image recovery problems which demonstrate the superiority of our method. Further experiments on real data also illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://wiki.idoimaging.com/index.php?title=Sample_Data.

  2. https://www.cs.columbia.edu/CAVE/databases/multispectral/real_and_fake/.

  3. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.

  4. http://trace.eas.asu.edu/yuv/.

  5. https://github.com/TaiXiangJiang/FastDeRain/tree/master.

  6. https://sbmi2015.na.icar.cnr.it/SBIdataset.html.

  7. https://rslab.ut.ac.ir/data.

  8. http://lesun.weebly.com/hyperspectral-data-set.html.

References

  1. Cao, L., Yang, X., Guo, X.: Total variation regularized RPCA for irregularly moving object detection under dynamic background. IEEE Trans. Cybern. 46(4), 1014–1027 (2015)

    Article  Google Scholar 

  2. Cao, W., Wang, Y., Sun, J., Meng, D., Yang, C., Cichocki, A., Xu, Z.: Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang, J.-H., Zhao, X.-L., Ji, T.-Y., Ma, T.-H., Huang, T.-Z.: Low-rank tensor train for tensor robust principal component analysis. Appl. Math. Comput. 367, 124783 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, W., Yang, G., Peng, J., Du, Q.: Lateral-slice sparse tensor robust principal component analysis for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(1), 107–111 (2019)

    Article  Google Scholar 

  5. Li, X., Shen, H., Zhang, L., Zhang, H., Yuan, Q., Yang, G.: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014). https://doi.org/10.1109/TGRS.2014.2307354

    Article  Google Scholar 

  6. Lin, C., Wang, Y., Wang, T., Ni, D.: Segmentation and recovery of pathological mr brain images using transformed low-rank and structured sparse decomposition. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1878–1881 (2019). https://doi.org/10.1109/ISBI.2019.8759441

  7. Chen, Y., He, W., Yokoya, N., Huang, T.-Z.: Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition. IEEE Trans. Cybern. 50(8), 3556–3570 (2020). https://doi.org/10.1109/TCYB.2019.2936042

    Article  Google Scholar 

  8. Ladas, N., Kaimakis, P., Chrysanthou, Y.: Background segmentation in multicolored illumination environments. Vis. Comput. 37(8), 2221–2233 (2021)

    Article  Google Scholar 

  9. Gao, Z., Cheong, L.-F., Wang, Y.-X.: Block-sparse RPCA for salient motion detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 1975–1987 (2014). https://doi.org/10.1109/TPAMI.2014.2314663

    Article  Google Scholar 

  10. Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1888–1902 (2018). https://doi.org/10.1109/TPAMI.2017.2734888

  11. Tu, Z., Guo, Z., Xie, W., Yan, M., Veltkamp, R.C., Li, B., Yuan, J.: Fusing disparate object signatures for salient object detection in video. Pattern Recogn. 72, 285–299 (2017). https://doi.org/10.1016/j.patcog.2017.07.028

    Article  Google Scholar 

  12. Abdi, H., Williams, L.J.: Principal component analysis. Wiley interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  13. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wright, J., Ganesh, A., Rao, S.R., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: NIPS, vol. 58, pp. 289–298 (2009)

  15. Croux, C., Haesbroeck, G.: Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 87(3), 603–618 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, G., Nehorai, A.: Robust principal component analysis based on low-rank and block-sparse matrix decomposition. In: 2011 45th Annual Conference on Information Sciences and Systems, pp. 1–5 (2011). https://doi.org/10.1109/CISS.2011.5766144

  17. Zhang, H., Cai, J., Cheng, L., Zhu, J.: Strongly convex programming for exact matrix completion and robust principal component analysis. arXiv preprint arXiv:1112.3946 (2011). https://doi.org/10.48550/arXiv.1112.3946

  18. Bhardwaj, A., Raman, S.: Robust PCA-based solution to image composition using augmented Lagrange multiplier (ALM). Vis. Comput. 32(5), 591–600 (2016)

    Article  Google Scholar 

  19. Giraldo-Zuluaga, J.-H., Salazar, A., Gomez, A., Diaz-Pulido, A.: Camera-trap images segmentation using multi-layer robust principal component analysis. Vis. Comput. 35(3), 335–347 (2019)

    Article  Google Scholar 

  20. Xue, Z., Dong, J., Zhao, Y., Liu, C., Chellali, R.: Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer. Vis. Comput. 35(2), 1549–1566 (2019)

    Article  Google Scholar 

  21. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, J.-H., Zhao, X.-L., Ma, T.-H., Ding, M., Huang, T.-Z.: Tensor train rank minimization with hybrid smoothness regularization for visual data recovery. Appl. Math. Model. 81, 711–726 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Prob. 27(2), 025010 (2011). https://doi.org/10.1088/0266-5611/27/2/025010

    Article  MathSciNet  MATH  Google Scholar 

  25. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by riemannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. arXiv preprint arXiv:1312.1254 (2013)

  27. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2012)

    Article  Google Scholar 

  28. Huang, B., Mu, C., Goldfarb, D., Wright, J.: Provable models for robust low-rank tensor completion. Pac. J. Optim. 11(2), 339–364 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Gao, S., Fan, Q.: Robust Schatten p-norm based approach for tensor completion. J. Sci. Comput. 82(1), 1–23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cao, W., Wang, Y., Sun, J., Meng, D., Yang, C., Cichocki, A., Xu, Z.: Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5249–5257 (2016)

  34. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)

  35. Semerci, O., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2019)

    Article  Google Scholar 

  37. Gao, Q., Zhang, P., Xia, W., Xie, D., Gao, X., Tao, D.: Enhanced tensor RPCA and its application. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2133–2140 (2021). https://doi.org/10.1109/TPAMI.2020.3017672

    Article  Google Scholar 

  38. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu, C., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839 (2016). https://doi.org/10.1109/TIP.2015.2511584

    Article  MathSciNet  MATH  Google Scholar 

  40. Parekh, A., Selesnick, I.W.: Enhanced low-rank matrix approximation. IEEE Signal Process. Lett. 23(4), 493–497 (2016). https://doi.org/10.1109/LSP.2016.2535227

    Article  Google Scholar 

  41. Larsson, V., Olsson, C.: Convex low rank approximation. Int. J. Comput. Vision 120(2), 194–214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Latorre, J.I.: Image compression and entanglement. arXiv preprint arXiv:quant-ph/0510031 (2005)

  43. Luo, Q., Liu, B., Zhang, Y., Han, Z., Tang, Y.: Low-rank decomposition on transformed feature maps domain for image denoising. Vis. Comput. 37(7), 1899–1915 (2021)

    Article  Google Scholar 

  44. Nie, F., Wang, H., Cai, X., Huang, H., Ding, C.: Robust matrix completion via joint Schatten p-norm and LP-norm minimization. In: 2012 IEEE 12th International Conference on Data Mining, pp. 566–574. IEEE (2012)

  45. Peng, C., Chen, Y., Kang, Z., Chen, C., Cheng, Q.: Robust principal component analysis: a factorization-based approach with linear complexity. Inf. Sci. 513, 581–599 (2020). https://doi.org/10.1016/j.ins.2019.09.074

    Article  MathSciNet  MATH  Google Scholar 

  46. Healey, G.E., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994)

    Article  Google Scholar 

  47. Bovik, A.C.: Handbook of Image and Video Processing, pp. 90–91. Academic Press, Burlington (2010)

    Google Scholar 

  48. Ji, H., Huang, S., Shen, Z., Xu, Y.: Robust video restoration by joint sparse and low rank matrix approximation. SIAM J. Imaging Sci. 4(4), 1122–1142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423 (2001). IEEE

  50. Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., Wang, Y.: Fastderain: a novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 28(4), 2089–2102 (2019). https://doi.org/10.1109/TIP.2018.2880512

    Article  MathSciNet  Google Scholar 

  51. Maddalena, L., Petrosino, A.: Towards benchmarking scene background initialization. CoRR arxiv:1506.04051 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Geng.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest with any individual/organization for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Geng, J., Liu, Y. et al. Robust principal component analysis based on tensor train rank and Schatten p-norm. Vis Comput 39, 5849–5867 (2023). https://doi.org/10.1007/s00371-022-02699-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02699-5

Keywords

Navigation