Skip to main content
Log in

Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Semi-supervised multi-view clustering in the subspace has attracted sustained attention. The existing methods often project the samples with the same label into the same point in the low dimensional space. This hard constraint-based method magnifies the dimension reduction error, restricting the subsequent clustering performance. To relax the labeled data during projection, we propose a novel method called label relaxation-based semi-supervised non-negative matrix factorization (LRSNMF). In our method, we first employ the Spearman correlation coefficient to measure the similarity between samples. Based on this, we design a new relaxed non-negative label matrix for better subspace learning, instead of the binary matrix. Also, we derive an updated algorithm based on an alternative iteration rule to solve the proposed model. Finally, the experimental results on three real-world datasets (i.e., MSRC, ORL1, and ORL2) with six evaluation indexes (i.e., accuracy, NMI, purity, F-score, precision, and recall) show the advantages of our LRSNMF, with comparison to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huang, L., Chao, H., Wang, C.: Multi-view intact space clustering. Pattern Recogn. 86, 344–353 (2019). https://doi.org/10.1016/j.patcog.2018.09.016

    Article  Google Scholar 

  2. Zeng, S., Wang, X., Cui, H., Zheng, C., Feng, D.D.: A unified collaborative multi kernel fuzzy clustering for multi-view data. IEEE Trans Fuzzy Syst 26(3), 1671–1687 (2018). https://doi.org/10.1109/TFUZZ.2017.2743679

    Article  Google Scholar 

  3. Wang, S., Zou, Y., Min, W., Xiong, X.: Multi-view face generation via unpaired images. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02129-y

    Article  Google Scholar 

  4. Zhan K, Niu C, Chen C, Nie F, Zhang C, Yang Y: Graph structure fusion for multi-view clustering. IEEE Trans Knowl Data Eng, 31(10):1984–1993 (2019),URL https://doi.org/10.1109/TKDE.2018.2872061

  5. Zhan K, Zhang C, Guan J, Wang J: Graph learning for multi-view clustering. IEEE Trans Cybern 48(10):2887–2895 (2018),URL https://doi.org/10.1109/TCYB.2017.2751646

  6. Bhattacharjee SD, Yuan J, Huang Y, Meng J, Duan L: Query adaptive multi-view object instance search and localization using sketches. IEEE Trans Multim 20(10):2761–2773 (2018),URL https://doi.org/10.1109/TMM.2018.2814338

  7. Zhang, Z., Liu, L., Shen, F., Shen, H.T., Shao, L.: Binary multi-view clustering. IEEE Trans Pattern Anal Mach Intell 41(7), 1774–1782 (2019). https://doi.org/10.1109/TPAMI.2018.2847335

    Article  Google Scholar 

  8. Nie, F., Cai, G., Li, J., Li, X.: Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process 27(3), 1501–1511 (2018). https://doi.org/10.1109/TIP.2017.2754939

    Article  MathSciNet  MATH  Google Scholar 

  9. DaiW, ErdtM, Sourin,A: Self-supervised pairing image clustering for automated quality control. The Visual Computer, 1–14 (2021), URL https://doi.org/10.1007/s00371-021-02137-y

  10. YangZ, ZhangY, XiangY, YanW, XieS: Non-negative matrix factorization with dual constraints for image clustering. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7), 2524–2533 (2018), URL https://ieeexplore.ieee.org/document/8360970

  11. Li, J., Yang, B., Yang, W., Sun, C., Xu, J.: Subspace-based multi-view fusion for instance-level image retrieval. Vis. Comput. 37(3), 619–633 (2021). https://doi.org/10.1007/s00371-020-01828-2

    Article  Google Scholar 

  12. ZhanK, NieF.: WangJ, YangY: Multi-view consensus graph clustering. IEEE Trans. Image Process. 28(3), 1261–1270 (2018). https://doi.org/10.1109/TIP.2018.2877335

    Article  Google Scholar 

  13. WangH, YangY.: LiuB: GMC: Graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1116–1129 (2019). https://doi.org/10.1109/TKDE.2019.2903810

    Article  Google Scholar 

  14. WangR, NieF.: WangZ, HuH, LiX: Parameter-free weighted multi-view projected clustering with structured graph learning. IEEE Trans. Knowl. Data Eng. 32(10), 2014–2025 (2019). https://doi.org/10.1109/TKDE.2019.2913377

    Article  Google Scholar 

  15. Yang, Z., Zhang, Y., Xiang, Y., Yan, W., Xie, S.: Non-negative matrix factorization with dual constraints for image clustering. IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(7), 2524–2533 (2020). https://doi.org/10.1109/TSMC.2018.2820084

    Article  Google Scholar 

  16. Zong L, Zhang X, Zhao L, Yu H, Zhao Q: Multi-view clustering via multi-manifold regularized non-negative matrix factorization. Neural Networks 88:74–89 (2017),URL https://doi.org/10.1016/j.neunet.2017.02.003

  17. Ou W, Yu S, Li G, Lu J, Zhang K, Xie G: Multi-view non-negative matrix factorization by patch alignment framework with view consistency. Neurocomputing 204:116–124 (2016),URL https://doi.org/10.1016/j.neucom.2015.09.133

  18. Yang Z, Liang N, Yan W, Li Z, Xie S: Uniform distribution non-negative matrix factorization for multi-view clustering. IEEE transactions on cybernetics51(6):3249–3262 (2020),URL https://doi.org/10.1109/TCYB.2020.2984552

  19. Gao J, Han J, Liu J, Wang C: Multi-view clustering via joint non-negative matrix factorization. In: Proceedings of the 13th SIAM International Conference on Data Mining, Austin, Texas, USA, SIAM, pp 252–260 (2013), URL https://doi.org/10.1137/1.9781611972832.28

  20. Huang S, Kang Z, Xu Z: Self-weighted multi-view clustering with soft capped norm. Knowl Based Syst 158:1–8 (2018),URL https://doi.org/10.1016/j.knosys.2018.05.017

  21. Wang H, Yang Y, Li T: Multi-view clustering via concept factorization with local manifold regularization. In: Bonchi F, Domingo-Ferrer J, Baeza-Yates R, Zhou Z, Wu X (eds) IEEE 16th International Conference on Data Mining, Barcelona, Spain, IEEE Computer Society, pp 1245–1250 (2016),URL https://doi.org/10.1109/ICDM.2016.0167

  22. Shao W, He L, Lu C, Wei X, Yu PS: Online unsupervised multi-view feature selection. In: Bonchi F, Domingo-Ferrer J, Baeza-Yates R, Zhou Z, Wu X (eds) IEEE 16th International Conference on Data Mining, Barcelona, Spain, IEEE Computer Society, pp 1203–1208 (2016), URL https://doi.org/10.1109/ICDM.2016.0160

  23. Tan Y, Ou W, Long F, Wang P, Xue Y: Multi-view clustering via co-regularized nonnegative matrix factorization with correlation constraint. In: 7th International Conference on Cloud Computing and Big Data, Macau, China, IEEE Computer Society, pp 1–6 (2016),URL https://doi.org/10.1109/CCBD.2016.012

  24. Wang, J., Tian, F., Yu, H., Liu, C.H., Zhan, K., Wang, X.: Diverse non-negative matrix factorization for multi-view data representation. IEEE Trans Cybern 48(9), 2620–2632 (2018). https://doi.org/10.1109/TCYB.2017.2747400

    Article  Google Scholar 

  25. Wang, X., Zhang, T., Gao, X.: Multiview clustering based on non-negative matrix factorization and pairwise measurements. IEEE Trans Cybern 49(9), 3333–3346 (2019). https://doi.org/10.1109/TCYB.2018.2842052

    Article  Google Scholar 

  26. ZhaoH, DingZ, FuY: Multi-view clustering via deep matrix factorization. In Thirty-First AAAI Conference on Artificial Intelligence. 2921–2927 (2017), URL http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14647

  27. YiY, ShiY, ZhangH, WangJ, KongJ: Label propagation based semi-supervised non-negative matrix factorization for feature extraction. Neurocomputing, 1491021–1037 (2015), URL https://doi.org/10.1016/j.neucom.2014.07.031

  28. QiuY, HaoP.: Self-supervised deep subspace clustering network for faces in videos. Vis. Comput. 37(8), 2253–2261 (2021). https://doi.org/10.1007/s00371-020-01984-5

    Article  Google Scholar 

  29. Qian, B., Gu, X., Shu, Z., Shen X: Constrained multi-view nmf with graph embedding for face clustering.: 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pp 103–106 (2018). URL (2018). https://doi.org/10.1109/DCABES.2018.00036

    Article  Google Scholar 

  30. Li, G., Zhang, X., Zheng, S., Li, D.: Semi-supervised convex nonnegative matrix factorizations with graph regularized for image representation. Neurocomputing 237, 1–11 (2017). https://doi.org/10.1016/j.neucom.2016.04.028

    Article  Google Scholar 

  31. Cai, H., Liu, B., Xiao, Y., Lin, L.: Semi-supervised multi-view clustering based on orthonormalityconstrained nonnegative matrix factorization. Inf S- ci 536, 171–184 (2020). https://doi.org/10.1016/j.ins.2020.05.073

    Article  MATH  Google Scholar 

  32. Liu, J., Jiang, Y., Li, Z., Zhou, Z., Lu, H.: Partially shared latent factor learning with multi-view data. IEEE Trans Neural Networks Learn Syst 26(6), 1233–1246 (2015). https://doi.org/10.1109/TNNLS.2014.2335234

    Article  MathSciNet  Google Scholar 

  33. Jiang, Y., Liu, J., Li, Z., Lu, H.: Semi-supervised unified latent factor learning with multi-view data. Mach Vis Appl 25(7), 1635–1645 (2014). https://doi.org/10.1007/s00138-013-0556-3

    Article  Google Scholar 

  34. Peng, S., Ser, W., Chen, B., Lin, Z.: Robust semi-supervised nonnegative matrix factorization for image clustering. Pattern Recogn. 111, 107683 (2021). https://doi.org/10.1016/j.patcog.2020.107683

    Article  Google Scholar 

  35. Xing, Z., Wen, M., Peng, J., Feng, J.: Discriminative semi-supervised non-negative matrix factorization for data clustering. Eng Appl Artif Intell 103, 104289 (2021). https://doi.org/10.1016/j.engappai.2021.104289

    Article  Google Scholar 

  36. Wang J, Wang X, Tian F, Liu CH, Yu H, Liu Y: Adaptive multi-view semi-supervised nonnegative matrix factorization. In: Hirose A, Ozawa S, Doya K, Ikeda K, Lee M, Liu D (eds) Neural Information Processing -23rd International Conference, Kyoto, Japan, Lecture Notes in Computer Science, vol 9948, pp 435–444 (2016), URL https://doi.org/10.1007/978-3-319-46672-9_49

  37. Shi, S., Nie, F., Wang, R., Li, X.: Auto-weighted multi-view clustering via spectral embedding. Neurocomputing 399, 369–379 (2020). https://doi.org/10.1016/j.neucom.2020.02.071

    Article  Google Scholar 

  38. Nie F, Li J, Li X: Self-weighted Multiview Clustering with Multiple Graphs. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence IJCAI:2564–2570 (2017), URL https://doi.org/10.24963/ijcai.2017/357

  39. Nie F, Li J, Li X: Parameter-Free Auto-Weighted Multiple Graph Learning: A Framework for Multiview Clustering and Semi-Supervised Classification. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence 1881–1887 (2016), URL http://www.ijcai.org/Abstract/16/269

  40. Nie, F., Shi, S., Li, X.: Auto-weighted multi-view co-clustering via fast matrix factorization. Pattern Recogn. 102, 107207 (2020). https://doi.org/10.1016/j.patcog.2020.107207

    Article  Google Scholar 

  41. Fang, X., Xu, Y., Li, X., Lai, Z., Wong, W., Fang, B.: Regularized label relaxation linear regression. IEEE transactions on neural networks and learning systems 29(4), 1006–1018 (2017). https://doi.org/10.1109/TNNLS.2017.2648880

    Article  Google Scholar 

  42. Xiang, S., Nie, F., Meng, G., Pan, C., Zhang, C.: Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Networks Learn Syst 23(11), 1738–1754 (2012). https://doi.org/10.1109/TNNLS.2012.2212721

    Article  Google Scholar 

  43. Zhang, W., Wei, Z., Wang, B., Han, X.: Commentary: Measuring mixing patterns in complex networks by Spearman rank correlation coefficient. Physica A 451, 440–450 (2016). https://doi.org/10.1016/j.physa.2016.01.056

    Article  Google Scholar 

  44. Yang, Z., Xiang, Y., Xie, K., Lai, Y.: Adaptive method for non-smooth non- negative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems 28(4), 948–960 (2017). https://doi.org/10.1109/TNNLS.2016.2517096

    Article  Google Scholar 

  45. Yang, Z., Zhou, G., Xie, S., Ding, S., Yang, J., Zhang, J.: Blind spectral un- mixing based on sparse nonnegative matrix factorization. IEEE Trans Image Process 20(4), 1112–1125 (2011). https://doi.org/10.1109/TIP.2010.2081678

    Article  MathSciNet  MATH  Google Scholar 

  46. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994). https://doi.org/10.1002/env.3170050203

    Article  Google Scholar 

  47. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8), 1548–1560 (2011). https://doi.org/10.1109/TPAMI.2010.231

    Article  Google Scholar 

  48. Ding CHQ, Li T, Peng W, Park H: Orthogonal nonnegative matrix t-factorizations for clustering. In: Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds) Proceedings of the Twelfth ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, ACM, pp 126–135 (2006), URL https://doi.org/10.1145/1150402.1150420

  49. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075

    Article  MATH  Google Scholar 

  50. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logistics quarerly 2(1–2), 83–97 (1955). https://doi.org/10.1002/nav.3800020109

    Article  MathSciNet  MATH  Google Scholar 

  51. Goldberger, J., Tassa, T.: A hierarchical clustering algorithm based on the hungarian method. Pattern Recognit. Lett. 29(11), 1632–1638 (2008). https://doi.org/10.1016/j.patrec.2008.04.003

    Article  Google Scholar 

  52. Liang, N., Yang, Z., Li, Z., Xie, S., Su, C.: Semi-supervised multi-view clustering with graph-regularized partially shared non-negative matrix factorization. Knowl Based Syst 190, 105185 (2020). https://doi.org/10.1016/j.knosys.2019.105185

    Article  Google Scholar 

  53. Peng, J., Luo, P., Guan, Z., Fan, J.: Graph-regularized multi-view semantic subspace learning. Int J Mach Learn Cybern 10(5), 879–895 (2019). https://doi.org/10.1007/s13042-017-0766-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Key-Area Research and Development Program of Guangdong Province under Grants 2019B010154002, 2019B010118001, and 2019B010121001; in part by the National Natural Science Foundation of China under Grants 61803096, 61801133, and U191140003; in part by the Guangzhou Science and Technology Program Project under Grant 202002030289; in part by the Guangdong Natural Science Foundation under Grant 2022A1515010688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiyao Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, H., Liang, N. et al. Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization. Vis Comput 39, 1409–1422 (2023). https://doi.org/10.1007/s00371-022-02419-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02419-z

Keywords

Navigation