Skip to main content
Log in

Graph matching based on feature and spatial location information

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Graph matching (GM) is a crucial task in the fields of computer vision. It aims at finding node-to-node correspondences between two graphs. In this paper, we propose a new GM method. We combine feature and spatial location information to construct a mixture dissimilarity matrix and compensate for the deficiency that previous methods consider only feature information. The element of this matrix is used to measure the difference in a pair of nodes. First, feature dissimilarity is measured using a new shape context descriptor. Second, spatial location dissimilarity is obtained by capturing local and global information of nodes. In accordance with the mixture dissimilarity matrix, the initial correspondences are established using the Hungarian method. Lastly, our method solves two objective functions and obtains the matching results. The experimental results for three commonly used datasets verify the efficiency and advantages of our method relative to the current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Almasri, I., Gao, X., Fedoroff, N.: Quick mining of isomorphic exact large patterns from large graphs. In: IEEE International Conference on Data Mining Workshop (2015)

  2. Beckmann, K.M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  4. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 804–818 (2018)

    Article  Google Scholar 

  5. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: European Conf. on Computer Vision , 492–505 (2010)

  6. Cho, M., Sun, J., Duchenne, O., Ponce, J.: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2083–2090 (2014)

  7. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2), 114–141 (2003)

    Article  MATH  Google Scholar 

  8. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Advances in Neural Information Processing Systems, pp. 313–320 (2007)

  9. Duchenne, O., Joulin, A., Ponce, J.: A graph-matching kernel for object categorization. In: International Conference on Computer Vision, pp. 1792–1799 (2011)

  10. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  11. Jiang, B., Tang, J., Cao, X., Luo, B.: Lagrangian relaxation graph matching. Pattern Recogn. 61, 255–265 (2017)

    Article  MATH  Google Scholar 

  12. Jiang, B., Tang, J., Ding, C., Luo, B.: A local sparse model for matching problem. In: Twenty-ninth Aaai Conference on Artificial Intelligence, pp. 3790–3796 (2015)

  13. Jiang, B., Tang, J., Luo, B.: Efficient feature matching via nonnegative orthogonal relaxation. Int. J. Comput. Vision 127(1),(2019)

  14. L-Huu, D.K., Paragios, N.: Alternating direction graph matching. In: Computer Vision and Pattern Recognition, pp. 6253–6261 (2017)

  15. Lawler, E.L.: The quadratic assignment problem. Manage. Sci. 9(4), 586–599 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, 2, 1482–1489 (2005)

  17. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: International Conference on Neural Information Processing Systems, pp. 1114–1122 (2009)

  18. Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph matching. Int. J. Comput. Vision 96(1), 28–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Riesen, K., Jiang, X., Bunke, H.: Exact and inexact graph matching: methodology and applications. Manag Min Graph Data , 217–247 (2010)

  20. Shen, T., Zhu, S., Fang, T., Zhang, R., Quan, L.: Graph-based consistent matching for structure-from-motion. In: European Conference on Computer Vision (2016)

  21. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artif. Intell. 174(12–13), 850–864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ullmann, J., R.: An algorithm for subgraph isomorphism. J. of the Acm 23(1), 31–42 (1976)

  23. Wang, F., Xue, N., Yu, J.G., Xia, G.S.: Zero-assignment constraint for graph matching with outliers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3033–3042 (2020)

  24. Wang, F.D., Xia, G.S., Xue, N., Zhang, Y., Pelillo, M.: A functional representation for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)

  25. Wang, T., Ling, H., Lang, C., Feng, S.: Graph matching with adaptive and branching path following. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2853–2867 (2018)

    Article  Google Scholar 

  26. Wang, Z., Feng, Z., Zhang, P.: An iterative hungarian algorithm based coordinated spectrum sensing strategy. IEEE Commun. Lett. 15(1), 49–51 (2011)

    Article  Google Scholar 

  27. Wu, J., Shen, H., Li, Y.D., Xiao, Z.B., Lu, M.Y., Wang, C.L.: Learning a hybrid similarity measure for image retrieval. Pattern Recogn. 46(11), 2927–2939 (2013)

    Article  MATH  Google Scholar 

  28. Yan, J., Yin, X.C., Lin, W., Deng, C., Zha, H., Yang,: X.: A short survey of recent advances in graph matching. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, pp. 167–174 (2016)

  29. Yu, T., Yan, J., Wang, Y., Liu, W., et al.: Generalizing graph matching beyond quadratic assignment model. In: Advances in neural information processing systems, pp. 853–863 (2018)

  30. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (2008)

  31. Zhou, F., De la Torre, F.: Factorized graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1774–1789 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of Shandong province (Nos. ZR2019MF013, ZR2019BF026), Project of Jinan Scientific Research Leader’s Laboratory (No. 2018GXRC023).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Niu, D., Yang, X. et al. Graph matching based on feature and spatial location information. Vis Comput 39, 711–722 (2023). https://doi.org/10.1007/s00371-021-02369-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02369-y

Keywords

Navigation