Skip to main content
Log in

Low dynamic range histogram equalization (LDR-HE) via quantized Haar wavelet transform

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Conventional contrast enhancement methods stretch histogram bins to provide a uniform distribution. However, they also stretch the existing natural noises which cause abnormal distributions and annoying artifacts. Histogram equalization should mostly be performed in low dynamic range (LDR) in which noises are generally distributed in high dynamic range (HDR). In this study, a novel image contrast enhancement method, called low dynamic range histogram equalization (LDR-HE), is proposed based on the Quantized Discrete Haar Wavelet Transform (HWT). In the frequency domain, LDR-HE performs a de-boosting operation on the high-pass channel by stretching the high frequencies of the probability mass function to the nearby zero. For this purpose, greater amplitudes than the absolute mean frequency in the high pass band are divided by a hyper alpha parameter. This damping parameter, which regulates the global contrast on the processed image, is the coefficient of variations of high frequencies, i.e., standard deviation divided by mean. This fundamental procedure of LDR-HE definitely provides a scalable and controlled dynamic range reduction in the histograms when the inverse operation is done in the reconstruction phase in order to regulate the excessive contrast enhancement rate. In the experimental studies, LDR-HE is compared with the 14 most popular local, global, adaptive, and brightness preserving histogram equalization methods. Experimental studies qualitatively and quantitatively show promising and encouraging results in terms of different quality measurement metrics such as mean squared error (MSE), peak signal-to-noise ratio (PSNR), Contrast Improvement Index (CII), Universal Image Quality Index (UIQ), Quality-aware Relative Contrast Measure (QRCM), and Absolute Mean Brightness Error (AMBE). These results are not only assessed through qualitative visual observations but are also benchmarked with the state-of-the-art quantitative performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mishro, P.K., Agrawal, S., Panda, R., Abraham, A.: A novel brightness preserving joint histogram equalization technique for contrast enhancement of brain MR images. Biocybern. Biomed. Eng. 41, 540–553 (2021)

    Article  Google Scholar 

  2. Alibabaie, N., Latif, A.: Adaptive periodic noise reduction in digital images using fuzzy transform. J. Math. Imaging Vis. 63(4), 503–527 (2021)

    Article  MathSciNet  Google Scholar 

  3. Lidong, H., Wei, Z., Jun, W., Zebin, S.: Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Proc. 9(10), 908–915 (2015)

    Article  Google Scholar 

  4. Akyüz, A.O., Reinhard, E.: Noise reduction in high dynamic range imaging. J. Vis. Commun. Image Represent. 18(5), 366–376 (2007)

    Article  Google Scholar 

  5. Bordé, P., Traub, W.: Speckle noise reduction techniques for high-dynamic range imaging. C. R. Phys. 8(3–4), 349–354 (2007)

    Article  Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson Publishing, New York (2017)

    Google Scholar 

  7. Ezhilarasi, R., Venkatalakshmi, K., Khanth, B.P.: Enhanced approximate discrete cosine transforms for image compression and multimedia applications. Multimed. Tools Appl. 79(13), 8539–8552 (2020)

    Article  Google Scholar 

  8. Fu, X., Cao, X.: Underwater image enhancement with global–local networks and compressed-histogram equalization. Signal Process. Image Commun. 86, 115892 (2020)

    Article  Google Scholar 

  9. Khan, S.A., Hussain, S., Yang, S.: Contrast enhancement of low-contrast medical images using modified contrast limited adaptive histogram equalization. J. Med. Imaging Health Inform. 10(8), 1795–1803 (2020)

    Article  Google Scholar 

  10. Kaur, A., Singh, C.: Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization. Appl. Soft Comput. 51, 180–191 (2017)

    Article  Google Scholar 

  11. Huang, H., Xiao, X.: Example-based contrast enhancement by gradient mapping. Vis. Comput. 26(6), 731–738 (2010)

    Article  Google Scholar 

  12. Lidong, H., et al.: Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Process. 9(10), 908–915 (2015)

    Article  Google Scholar 

  13. Coltuc, D., Bolon, P., Chassery, J.-M.: Exact histogram specification. IEEE Transa. Image Process. 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  14. Abdullah-Al-Wadud, M., Kabir, M.H., Ali Akber Dewan, M., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  15. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  16. Kim, Y.-T.: Contrast enhancement using brightness preserving bi histogram equalization. IEEE Trans. Consum. Electron. 43, 1–8 (1997)

    Article  Google Scholar 

  17. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45, 68–75 (1999)

    Article  Google Scholar 

  18. Chenand, S.-D., Ramli, A.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49, 1310–1319 (2003)

    Article  Google Scholar 

  19. Singh, K., Kapoor, R.: Image enhancement via median-mean based sub-image-clipped histogram equalization. Optik 125(17), 4646–4651 (2014)

    Article  Google Scholar 

  20. Singh, K., Kapoor, R.: Image enhancement using exposure based sub image histogram equalization. Pattern Recogn. Lett. 36, 10–14 (2014)

    Article  Google Scholar 

  21. Poddar, S., Tewary, S., Sharma, D., Karar, V., Ghosh, A., Pal, S.K.: Non-parametric modified histogram equalisation for contrast enhancement. IET Image Proc. 7(7), 641–652 (2013)

    Article  Google Scholar 

  22. Kim, M., Chung, M.G.: Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans. Consum. Electron. 54(3), 1389–1397 (2008)

    Article  Google Scholar 

  23. Sim, K.S., Tso, C.P., Tan, Y.Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  24. Chen, S.D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  25. Cho, D., Bui, T.D.: Fast image enhancement in compressed wavelet domain. Signal Process. 98, 295–307 (2014)

    Article  Google Scholar 

  26. Iqbal, M.Z., Ghafoor, A., Siddiqui, A.M., Riaz, M.M., Khalid, U.: Dual-tree complex wavelet transform and SVD based medical image resolution enhancement. Signal Process. 105, 430–437 (2014)

    Article  Google Scholar 

  27. Wong, C.Y., Liu, S., Liu, S.C., Rahman, M.A., Lin, S.C.-F., Jiang, G., Kwok, N., Shi, H.: Image contrast enhancement using histogram equalization with maximum intensity coverage. J. Mod. Opt. 63(16), 1618–1629 (2016)

    Article  MathSciNet  Google Scholar 

  28. Shanmugavadivu, P., Balasubramanian, K., Muruganandam, A.: Particle swarm optimized bi-histogram equalization for contrast enhancement and brightness preservation of images. Vis. Comput. 30(4), 387–399 (2014)

    Article  Google Scholar 

  29. Joshi, P., Prakash, S.: Image enhancement with naturalness preservation. Vis. Comput. 36(1), 71–83 (2020)

    Article  Google Scholar 

  30. Dhal, K.G., Das, A., Ray, S., Gálvez, J., Das, S.: Histogram equalization variants as optimization problems: a review. Arch. Comput. Methods Eng. 28(3), 1471–1496 (2021)

    Article  Google Scholar 

  31. Tan, S.F., Isa, N.A.M.: Exposure based multi-histogram equalization contrast enhancement for non-uniform illumination images. IEEE Access 7, 70842–70861 (2019)

    Article  Google Scholar 

  32. Bushberg, J.T., Boone, J.M.: The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins, Philadelphia (2011)

    Google Scholar 

  33. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010)

    Article  Google Scholar 

  34. Bulut, F.: URL: https://sites.google.com/site/bulutfaruk/study-of-ldr-he. Access 05 July 2021

  35. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep CNN with batch renormalization. Neural Netw. 121, 461–473 (2020)

    Article  Google Scholar 

  36. Tian, C., Xu, Y., Zuo, W., Zhang, B., Fei, L., Lin, C.W.: Coarse-to-fine CNN for image super-resolution. IEEE Trans. Multimed. 23, 1489–1502 (2020)

    Article  Google Scholar 

  37. Tian, C., Xu, Y., Zuo, W., Lin, C. W., Zhang, D.: Asymmetric CNN for ımage superresolution. IEEE Trans. Syst. Man Cybern. Syst. 1–13 (2021)

  38. Celik, T.: Spatial mutual information and PageRank-based contrast enhancement and quality-aware relative contrast measure. IEEE Trans. Image Process. 25(10), 4719–4728 (2016)

    Article  MathSciNet  Google Scholar 

  39. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  40. Jang, C.Y., Kang, S.J., Kim, Y.H.: Adaptive contrast enhancement using edge-based lighting condition estimation. Digit. Signal Process. 58, 1–9 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The introduced LDR-HE model has been implemented in the MATLAB R2020a and Java Processing v3.3.7 platforms. All of the implemented original codes, the benchmark datasets, the output images in both gray scale and RGB formats, the entire experimental results in terms of extra metrics, the full comparative lists in spreadsheet tables might be publicly downloaded from the web address [34] for the purpose of examinations, assessments, further studies, and citations. There is also a straightforward illustration by presenting an 8-bit scenario to make the procedures of the proposed method clearer. I would also like to express my deepest appreciations to the editor and anonymous reviewers whose creative comments helped improve and clarify this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Bulut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, F. Low dynamic range histogram equalization (LDR-HE) via quantized Haar wavelet transform. Vis Comput 38, 2239–2255 (2022). https://doi.org/10.1007/s00371-021-02281-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02281-5

Keywords

Navigation