Skip to main content
Log in

Image encryption using shuffled Arnold map and multiple values manipulations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present an image encryption scheme based on improved Arnold map. The improvement in the Arnold map includes a Divide & Rotate operation and pixels shuffling. The obtained shuffled Arnold map shows better results in terms of performance and speed. The proposed encryption scheme applies a preprocessing procedure on the plain image. We use the Shuffled Arnold map in the confusion process for only one round. For the diffusion process, we execute a Forward & Backward process to apply an integer-level values manipulation. The evaluation of the proposed method shows high sensitivity and resistance against common attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hofmann, G.R.: The modelling of images for communication in multimedia environments and the evolution from the image signal to the image document. Vis. Comput. 9(6), 303–317 (1993). https://doi.org/10.1007/BF01901911

    Article  Google Scholar 

  2. Lin, C.-H., Chao, M.-W., Liang, C.-Y., Lee, T.-Y.: A novel semi-blind-and-semi-reversible robust watermarking scheme for 3D polygonal models. Vis. Comput. 26(6), 1101–1111 (2010). https://doi.org/10.1007/s00371-010-0461-y

    Article  Google Scholar 

  3. Tu, S.-C., Tai, W.-K., Isenburg, M., Chang, C.-C.: An improved data hiding approach for polygon meshes. Vis. Comput. 26(9), 1177–1181 (2010). https://doi.org/10.1007/s00371-009-0398-1

    Article  Google Scholar 

  4. Li, G., Wang, L.: Double chaotic image encryption algorithm based on optimal sequence solution and fractional transform. Vis. Comput. 35(9), 1267–1277 (2019). https://doi.org/10.1007/s00371-018-1574-y

    Article  Google Scholar 

  5. Wang, X., Gao, S.: Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020). https://doi.org/10.1016/j.ins.2019.08.041

    Article  MathSciNet  Google Scholar 

  6. Wang, X., Feng, L., Zhao, H.: Fast image encryption algorithm based on parallel computing system. Inf. Sci. 486, 340–358 (2019). https://doi.org/10.1016/j.ins.2019.02.049

    Article  MATH  Google Scholar 

  7. Hua, Z., Jin, F., Xu, B., Huang, H.: 2D logistic-sine-coupling map for image encryption. Signal Process. 149, 148–161 (2018). https://doi.org/10.1016/j.sigpro.2018.03.010

    Article  Google Scholar 

  8. Liu, L., Miao, S., Hu, H., Cheng, M.: N-phase logistic chaotic sequence and its application for image encryption. IET Signal Process. 10(9), 1096–1104 (2016). https://doi.org/10.1049/iet-spr.2015.0522

    Article  Google Scholar 

  9. Pareschi, F., Setti, G., Rovatti, R.: Implementation and testing of high-speed CMOS true random number generators based on chaotic systems. IEEE Trans. Circuits Syst. Regul. Pap. 57(12), 3124–3137 (2010). https://doi.org/10.1109/TCSI.2010.2052515

    Article  MathSciNet  Google Scholar 

  10. Seyedzadeh, S.M., Norouzi, B., Mosavi, M.R., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015). https://doi.org/10.1007/s11071-015-2008-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, Y., Yu, J., Lai, W., Liu, L.: A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimed. Tools Appl. 78(15), 22023–22043 (2019). https://doi.org/10.1007/s11042-019-7453-3

    Article  Google Scholar 

  12. Elshamy, A.M., et al.: Optical image cryptosystem using double random phase encoding and Arnold’s Cat map. Opt. Quantum Electron. 48(3), 212 (2016). https://doi.org/10.1007/s11082-016-0461-x

    Article  Google Scholar 

  13. Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014). https://doi.org/10.1007/s11071-014-1533-8

    Article  Google Scholar 

  14. Xie, E.Y., et al.: On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. (2017). https://doi.org/10.1016/j.sigpro.2016.10.002

    Article  Google Scholar 

  15. Zhou, Y., Bao, L., Chen, C.L.P.: Image encryption using a new parametric switching chaotic system. Signal Process. 93(11), 3039–3052 (2013). https://doi.org/10.1016/j.sigpro.2013.04.021

    Article  Google Scholar 

  16. Hua, Z., Zhou, Y., Pun, C.-M., Chen, C.L.P.: 2D sine logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015). https://doi.org/10.1016/j.ins.2014.11.018

    Article  Google Scholar 

  17. Hua, Z., Zhou, Y.: Image encryption using 2D logistic-adjusted-sine map. Inf. Sci. 339, 237–253 (2016). https://doi.org/10.1016/j.ins.2016.01.017

    Article  Google Scholar 

  18. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019). https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  19. Schöpf, H.-G., Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. (The Mathematical Physics Monograph Series) IX + 286 S. m. Fig. New York/Amsterdam 1968. W. A. Benjamin, Inc. Preis geb. \( 14.75, brosch. \) 6.95 .,” ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech., vol. 50. https://doi.org/10.1002/zamm.19700500721 (1970)

  20. Ye, G., Wong, K.-W.: An efficient chaotic image encryption algorithm based on a generalized Arnold map. Nonlinear Dyn. 69(4), 2079–2087 (2012). https://doi.org/10.1007/s11071-012-0409-z

    Article  MathSciNet  Google Scholar 

  21. Ye, R.: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Opt. Commun. 284, 5290–5298 (2011). https://doi.org/10.1016/j.optcom.2011.07.070

    Article  Google Scholar 

  22. Zhang, Y.-Q., Wang, X.-Y.: Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation. Nonlinear Dyn. 77(3), 687–698 (2014). https://doi.org/10.1007/s11071-014-1331-3

    Article  Google Scholar 

  23. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y., Wong, K.-W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11(1), 514–522 (2011). https://doi.org/10.1016/j.asoc.2009.12.011

    Article  Google Scholar 

  25. Zhang, Y., Tang, Y.: A plaintext-related image encryption algorithm based on chaos. Multimed. Tools Appl. 77(6), 6647–6669 (2018). https://doi.org/10.1007/s11042-017-4577-1

    Article  Google Scholar 

  26. Zhan, K., Wei, D., Shi, J., Yu, J.: Cross-utilizing hyperchaotic and DNA sequences for image encryption. J. Electron. Imaging 26(1), 013021 (2017). https://doi.org/10.1117/1.JEI.26.1.013021

    Article  Google Scholar 

  27. Ramalingam, B., Ravichandran, D., Annadurai, A.A., Rengarajan, A., Rayappan, J.B.B.: Chaos triggered image encryption—a reconfigurable security solution. Multimed. Tools Appl. 77(10), 11669–11692 (2018). https://doi.org/10.1007/s11042-017-4811-x

    Article  Google Scholar 

  28. Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012). https://doi.org/10.1007/s11071-011-0006-6

    Article  MathSciNet  Google Scholar 

  29. Norouzi, B., Mirzakuchaki, S.: A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn. 78(2), 995–1015 (2014). https://doi.org/10.1007/s11071-014-1492-0

    Article  Google Scholar 

  30. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013). https://doi.org/10.1016/j.ins.2012.07.049

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, L., Ma, B., Zhao, X., Wang, S.: Differential cryptanalysis of a novel image encryption algorithm based on chaos and line map. Nonlinear Dyn. 87(3), 1797–1807 (2017). https://doi.org/10.1007/s11071-016-3153-y

    Article  MATH  Google Scholar 

  32. Liu, Y., Zhang, L.Y., Wang, J., Zhang, Y., Wong, K.: Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure. Nonlinear Dyn. 84(4), 2241–2250 (2016). https://doi.org/10.1007/s11071-016-2642-3

    Article  MATH  Google Scholar 

  33. Wu, Y.: NPCR and UACI randomness tests for image encryption. Cyber J. J. Sel. Areas Telecommun. 1(2), 31–38 (2011)

    Google Scholar 

  34. Wu, Y.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 21(1), 013014 (2012). https://doi.org/10.1117/1.JEI.21.1.013014

    Article  Google Scholar 

  35. Wells, P.N.T.: Handbook of image and video processing. Physiol. Meas. 22(1), 263–264 (2001). https://doi.org/10.1088/0967-3334/22/1/702

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No.: 61672124), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (No.: MMJJ20170203), Liaoning Province Science and Technology Innovation Leading Talents Program Project (No.: XLYC1802013), Key R&D Projects of Liaoning Province (No.: 2019020105-JH2/103), and Jinan City ‘20 universities’ Funding Projects Introducing Innovation Team Program (No.:2019GXRC031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mansouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, A., Wang, X. Image encryption using shuffled Arnold map and multiple values manipulations. Vis Comput 37, 189–200 (2021). https://doi.org/10.1007/s00371-020-01791-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01791-y

Keywords

Navigation