Skip to main content
Log in

Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Hyperspectral imaging is known for its rich spatial–spectral information. The spectral bands provide the ability to distinguish substances spectra which are substantial for analyzing materials. However, high-dimensional data volume of hyperspectral images is problematic for data storage. In this paper, we present a lossy hyperspectral image compression system based on the regression of 3D wavelet coefficients. The 3D wavelet transform is applied to sparsely represent the hyperspectral images (HSI). A support vector machine regression is then applied on wavelet details and provides vector supports and weights which represent wavelet texture features. To achieve the best possible overall rate-distortion performance after regression, entropy encoding based on run-length encoding and arithmetic encoding is used. To preserve the spatial pertinent information of the image, the lowest sub-band wavelet coefficients are furthermore encoded by a lossless coding with differential pulse code modulation. Spectral and spatial redundancies are thus substantially reduced. Experimental tests are performed over several HSI from airborne and spaceborne sensors and compared with the main existing algorithms. The obtained results show that the proposed compression method has high performances in terms of rate distortion and spectral fidelity. Indeed, high PSNRs and classification accuracies, which could exceed 40.65 dB and \(75.8\%\), respectively, are observed for all decoded HSI images and overpass those given by many cited famous methods. In addition, the evaluation of detection and compression over various bands shows that spectral information is preserved using our compression method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

  2. http://www.ehu.eus/ccwintco/uploads/2/22/Indian_pines.mat.

  3. http://cobweb.ecn.purdue.edu/~biehl/Hyperspectral_Project.zip.

  4. https://coding.jpl.nasa.gov/hyperspectral/.

  5. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  6. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes, http://lesun.weebly.com/hyperspectral-data-set.html.

  7. http://www.escience.cn/people/feiyunZHU/Dataset_GT.html.

References

  1. Prathap, I., Anitha, R.: Watermark detection in spatial and transform domains based on tree structured wavelet transform. In: International Symposium on Security in Computing and Communication, pp. 230-238. Springer, Berlin (2014)

  2. Andries, B., Lemeire, J., Munteanu, A.: Scalable texture compression using the wavelet transform. Vis. Comput. 33(9), 1121–1139 (2017)

    Google Scholar 

  3. Joshi, P., Prakash, S., Rawat, S.: Continuous wavelet transform-based no-reference quality assessment of deblocked images. Vis. Comput. 34(12), 1739–1748 (2018)

    Google Scholar 

  4. He, L., Wang, Y., Xiang, Z.: Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients. Vis. Comput. 35(2), 151–174 (2019)

    Google Scholar 

  5. Venugopal, D., Mohan, S., Raja, S.: An efficient block based lossless compression of medical images. Optik Int. J. Light Electron Opt. 127(2), 754–758 (2016)

    Google Scholar 

  6. Khiari-Hili, N., Lelandais, S., Montagne, C., Roumes, C., Hamrouni, K., Plantier, J.: Bio-inspired image enhancement derived from a rank order coding model. IET Image Proc. 10(5), 409–417 (2016)

    Google Scholar 

  7. Govindan, P., Saniie, J.: Processing algorithms for three-dimensional data compression of ultrasonic radio frequency signals. IET Signal Proc. 9(3), 267–276 (2015)

    Google Scholar 

  8. Lee, M.S., Ueng, S.K., Lin, J.J.: Wavelets-based smoothness comparisons for volume data. IET Image Proc. 9(12), 1057–1063 (2015)

    Google Scholar 

  9. Cheng, K.J., Dill, J.C.: An improved EZW hyperspectral image compression. J. Comput. Commun. 2(02), 31–36 (2014)

    Google Scholar 

  10. Sujithra, D.S., Manickam, T., Sudheer, D.S.: Compression of hyperspectral image using discrete wavelet transform and Walsh Hadamard transform. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 2, 314–319 (2013)

    Google Scholar 

  11. Aul í-Llinas, F., Marcellin, M.W., Serra-Sagrista, J., Bartrina-Rapesta, J.: Lossy-to-lossless 3D image coding through prior coefficient lookup tables. Inf. Sci. 239, 266–282 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Delcourt, J., Mansouri, A., Sliwa, T., Voisin, Y.: An evaluation framework and a benchmark for multi/hyperspectral image compression. In: Sarfraz, M. (ed.) Intelligent Computer Vision and Image Processing: Innovation, Application, and Design, pp. 56–66. IGI Global, Hershey (2013)

    Google Scholar 

  13. Hegde, G., Vaya, P.: Systolic array based motion estimation architecture of 3D DWT sub band component for video processing. Int. J. Signal Imaging Syst. Eng. 5(3), 158–166 (2012)

    Google Scholar 

  14. Lahdir, M., Nait-ali, A., Ameur, S.: Fast encoding-decoding of 3D hyperspectral images using a non-supervised multimodal compression scheme. J. Signal Inf. Process. 2(4), 316–321 (2011)

    Google Scholar 

  15. Jiao, R., Li, Y., Wang, Q., Li, B.: SVM regression and its application to image compression. In: Advances in Intelligent Computing, pp. 747–756. Springer, Berlin (2005)

  16. Li, Y., Hu, H.: Image compression using wavelet support vector machines. In: International Conference on Intelligent Computing, pp. 922–929. Springer, Berlin (2007)

  17. Fazli, S., Toofan, S., Mehrara, Z.: JPEG2000 image compression using SVM and DWT. Int. J. Sci. Eng. Investig. 1, 53–57 (2012)

    Google Scholar 

  18. Zhang, L., Zhang, L., Tao, D., Huang, X., Du, B.: Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147, 358–363 (2015)

    Google Scholar 

  19. Fang, L., He, N., Lin, H.: CP tensor-based compression of hyperspectral images. J. Opt. Soc. Am. A 34(2), 252–258 (2017)

    Google Scholar 

  20. Huang, B., Nian, Y., Wan, J.: Distributed lossless compression algorithm for hyperspectral images based on classification. Spectrosc. Lett. 48, 528–535 (2015)

    Google Scholar 

  21. Amrani, N., Serra-Sagrist, J., Laparra, V., Marcellin, M.W., Malo, J.: Regression wavelet analysis for lossless coding of remote-sensing data. IEEE Trans. Geosci. Remote Sens. 54(9), 5616–5627 (2016)

    Google Scholar 

  22. Meyer, Y.: Wavelets and Applications. Springer, Berlin (1992)

    Google Scholar 

  23. Qian, Y., Ye, M.: Hyperspectral imagery restoration using nonlocal spectral–spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(2), 499–515 (2013)

    MathSciNet  Google Scholar 

  24. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    MATH  Google Scholar 

  25. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    MATH  Google Scholar 

  26. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250 (1996)

    Google Scholar 

  27. Islam, A., Pearlman, W.A.: Embedded and efficient low-complexity hierarchical image coder. InL Electronic Imaging’99, pp. 294–305. International Society for Optics and Photonics (1998)

  28. Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)

    Google Scholar 

  29. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)

    MathSciNet  Google Scholar 

  30. Mallat, S.G.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)

    Google Scholar 

  31. Kim, B.J., Pearlman, W.A.: An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT). In: Proceedings of the International Conference on Data Compression Conference, DCC’97, pp. 251–260. IEEE (1997)

  32. Reddy, B.E., Narayana, K.V.: A lossless image compression using traditional and lifting based wavelets. Signal Image Process. 3(2), 213–222 (2012)

    Google Scholar 

  33. Abdullah, M.S., Rao, N.S.: Image compression using classical and lifting based wavelets. Int. J. Adv. Res. Comput. Commun. Eng. 2(8), 3193–3198 (2013)

    Google Scholar 

  34. Wu, Q.: A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst. Appl. 37(3), 2388–2394 (2010)

    Google Scholar 

  35. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  36. Mercer, J.: Functions of positive and negative type, and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 209, 415–446 (1909)

    MATH  Google Scholar 

  37. Howard, P.G., Vitter, J.S.: Arithmetic coding for data compression. Proc. IEEE 82(6), 857–865 (1994)

    Google Scholar 

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  39. Wang, Z., Zhang, D., Yu, Y.: Video quality assessment based on structural distortion measurement. Signal Process. Image Commun. 19(2), 121–132 (2004)

    Google Scholar 

  40. Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 49, 4865–4876 (2011)

    Google Scholar 

  41. Ran, L., Zhang, Y., Wei, W., Zhang, Q.: A hyperspectral image classification framework with spatial pixel pair features. Sensors 17(10), 2421 (2017)

    Google Scholar 

  42. Fu, W., Li, S., Fang, L., Benediktsson, J.A.: Adaptive spectral–spatial compression of hyperspectral image with sparse representation. IEEE Trans. Geosci. Remote Sens. 55, 1–12 (2016)

    Google Scholar 

  43. Karami, A., Beheshti, S., Yazdi, M.: Hyperspectral image compression using 3D discrete cosine transform and support vector machine learning. In: Information Science Signal Processing and Their Applications (ISSPA), pp. 809–812. IEEE (2012)

  44. Tang, X., Pearlman, W.A.: Three-dimensional wavelet-based compression of hyperspectral images, ch. 10. In: Motta, G., Rizzo, F., Storer, J.A. (eds.) Hyperspectral Data Compression, pp. 273–278. Springer, New York (2006)

    Google Scholar 

  45. Du, Q., Fowler, J.E.: Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci. Remote Sens. Lett. 4, 201–205 (2007)

    Google Scholar 

  46. Du, Q., Ly, N., Fowler, J.E.: An operational approach to PCA+JPEG2000 compression of hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2237–2245 (2014)

    Google Scholar 

  47. Garcia-Vilchez, F., et al.: On the impact of lossy compression on hyperspectral image classification and unmixing. IEEE Geosci. Remote Sensing. Lett. 8(2), 253–257 (2011)

    Google Scholar 

  48. Boussakta, S., Alshibami, H.O.: Fast algorithm for the 3-D DCT-II. IEEE Trans. Signal Process. 52, 992–1001 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Karami, A., Yazdi, M., Mercier, G.: Compression of hyperspectral images using discerete wavelet transform and tucker decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 444–450 (2012)

    Google Scholar 

  50. Zikiou, N., Lahdir, M., Ameur, S.: Color image compression based on wavelet transform and support vector regression. In: 2014 First International IEEE Image Processing, Applications and Systems Conference (IPAS), pp. 1–6 (2014)

  51. Hu, W., Huang, Y., Li, W., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J Sens. 2015, 1–12 (2015)

    Google Scholar 

  52. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

    Google Scholar 

  53. Li, W., Wu, G., Zhang, F., Du, Q.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)

    Google Scholar 

  54. Li, Z., Zhong, J., Luo, Z., Chapman, M.: Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 56(2), 847–858 (2018)

    Google Scholar 

  55. Li, M., Zhang, W., Du, Q.: Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26(10), 4843–4855 (2017)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Zikiou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zikiou, N., Lahdir, M. & Helbert, D. Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression. Vis Comput 36, 1473–1490 (2020). https://doi.org/10.1007/s00371-019-01753-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01753-z

Keywords

Navigation