Skip to main content
Log in

Fast two-stage segmentation model for images with intensity inhomogeneity

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Based on the local correntropy-based K-means clustering active contour model, this paper proposes a fast two-stage segmentation method for intensity inhomogeneous images. Under our framework, the segmentation process is split into two stages. In the first stage, we preliminary segment the down-sampled images by the proposed relaxed anisotropic–isotropic local correntropy-based K-means clustering (AILCK) model, which can obtain a coarse segmentation result quickly. Subsequently, in the second stage, we further segment original images by an improved AILCK model, where we use the up-sampled coarse contour obtained by the first stage as the initialization. Following it, to obtain the global minima of energy functions fast, we incorporate a weighted difference of anisotropic and isotropic total variations into relaxed formulation of the two-stage active contour models. And then, we minimize them utilizing the difference-of-convex algorithm and the primal–dual hybrid gradient method. The experimental results on synthetic and real-world images demonstrate that the proposed method can achieve accurate segmentation results for intensity inhomogeneous images in a fast way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  2. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  3. Ning, X., Ahuja, N., Bansal, R.: Object segmentation using graph cuts based active contours. Comput. Vis. Image Underst. 107(3), 210–224 (2007)

    Article  Google Scholar 

  4. Zhu, G.: Boundary-based image segmentation using binary level set method. Opt. Eng. 46(5), 050501 (2007)

    Article  Google Scholar 

  5. Wang, L., Pan, C.: Robust level set image segmentation via a local correntropy-based K-means clustering. Pattern Recognit. 47(5), 1917–1925 (2014)

    Article  Google Scholar 

  6. Akram, F., Garcia, M.A., Puig, D.: Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity. PLoS ONE 12(4), e0174813 (2017)

    Article  Google Scholar 

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  Google Scholar 

  8. Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)

    Article  Google Scholar 

  9. Kimmel, R., Amir, A., Bruckstein, A.M.: Finding shortest paths on surfaces using level sets propagation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 635–640 (1995)

    Article  Google Scholar 

  10. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  11. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4–9 (1995)

  12. Chenyang, X., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  Google Scholar 

  13. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  14. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  15. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)

    Article  Google Scholar 

  16. Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199–1206 (2010)

    Article  Google Scholar 

  17. Wang, L.F., Yu, Z., Pan, C.H.: Medical image segmentation based on novel local order energy. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6493 LNCS, pp. 148–159. Springer, Berlin (2011)

  18. Zhang, K., Zhang, L., Lam, K.-M., Zhang, D.: A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans. Cybern. 46(2), 546–557 (2016)

    Article  Google Scholar 

  19. Wang, H., Huang, T.Z., Zhi, X., Wang, Y.: A two-stage image segmentation via global and local region active contours. Neurocomputing 205, 130–140 (2016)

    Article  Google Scholar 

  20. Soomro, S., Munir, A., Choi, K.N.: Hybrid two-stage active contour method with region and edge information for intensity inhomogeneous image segmentation. PLoS ONE 13(1), e0191827 (2018)

    Article  Google Scholar 

  21. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  Google Scholar 

  22. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  23. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  24. Lou, Y., Yin, P., He, Q., Xin, J.: Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of \(L_1\) and \(L_2\). J. Sci. Comput. 64(1), 178–196 (2015)

    Article  MathSciNet  Google Scholar 

  25. Lou, Y., Zeng, T., Osher, S., Xin, J.: A weighted difference of anisotropic and isotropic total variation model for image processing. SIAM J. Imaging Sci. 8(3), 1798–1823 (2015)

    Article  MathSciNet  Google Scholar 

  26. Park, F., Lou, Y., Xin, J.: A weighted difference of anisotropic and isotropic total variation for relaxed Mumford–Shah image segmentation. In: Proceedings—International Conference on Image Processing, ICIP, volume 2016-August, pp. 4314–4318. IEEE (Sept 2016)

  27. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Rep. 1, 1–29 (2008)

    Google Scholar 

  28. Osher, S., Sethian, J.A.: Front propagating with courvature-dependent speed: algorithms based on Hamilton–Jacoby formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  29. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Peng, G. Fast two-stage segmentation model for images with intensity inhomogeneity. Vis Comput 36, 1189–1202 (2020). https://doi.org/10.1007/s00371-019-01728-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01728-0

Keywords

Navigation