Skip to main content
Log in

Illustrative multilevel focus+context visualization along snaking paths

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Artistic anatomical illustrations often focus on cross sections of long, layered, cylindrical structures. Such illustrations emphasize structures along transitions between focal points over a snaking path that optimally traverses the span of a limited space. The transitions between focal points form a multilevel visualization hierarchy. In this article, we present an approach to automatically create focus+context visualizations of the described form. First, a method to automatically create a snaking path through space by applying a pathfinding algorithm is presented. A 3D curve is created based on a 2D snaking path. Then we describe a process to deform cylindrical structures in segmented volumetric models along the 3D curve and provide preliminary geometric models as templates for artists to build upon. Our constrained volume sculpting method enables the removal of occluding material to reveal cylindrical structures of interest intended for such deformation. Finally, we present a set of created visualizations that demonstrates the flexibility of our approach and effectively mimics the form of visualization observed in motivating illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pietriga, E., Appert, C.: Sigma lenses: Focus-context transitions combining space, time and translucence. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI, pp. 1343–1352. ACM, New York, USA (2008). doi:10.1145/1357054.1357264

  2. Pindat, C., Pietriga, E., Chapuis, O., Puech, C.: JellyLens: content-aware adaptive lenses. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST, pp. 261–270. ACM, New York, USA (2012). doi:10.1145/2380116.2380150

  3. Hasan, M., Samavati, F.F., Jacob, C.: Multilevel focus+context visualization using balanced multiresolution. In: International Conference on Cyberworlds (CW) 2014, pp. 145–152. IEEE (2014). doi:10.1109/CW.2014.28

  4. Hasan, M., Samavati, F.F., Jacob, C.: Interactive multilevel focus+context visualization framework. Vis. Comput. 1–12 (2015). doi:10.1007/s00371-015-1180-1

  5. Taerum, T., Sousa, M.C., Samavati, F., Chan, S., Mitchell, J.R.: Real-time super resolution contextual close-up of clinical volumetric data. In: Proceedings of the Eighth Joint Eurographics/IEEE VGTC Conference on Visualization, EUROVIS, pp. 347–354. Eurographics Association, Aire-la-Ville, Switzerland (2006). doi:10.2312/VisSym/EuroVis06/347-354

  6. Chen, H.L.J., Samavati, F.F., Sousa, M.C.: GPU-based point radiation for interactive volume sculpting and segmentation. Vis. Comput. 24, 689–698 (2008). doi:10.1007/s00371-008-0249-5

    Article  Google Scholar 

  7. Cohen, M.: Focus and context for volume visualization. Ph.D. thesis (2006)

  8. Cohen, M., Brodlie, K.: Focus and context for volume visualization. In: Proceeding of the Theory and Practice of Computer Graphics Conference, pp. 32–39. IEEE (2004). doi:10.1109/TPCG.2004.1314450

  9. Carpendale, M.S.T., Montagnese, C.: A framework for unifying presentation space. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST, pp. 61–70. ACM, New York, USA (2001). doi:10.1145/502348.502358

  10. Wang, L., Zhao, Y., Mueller, K., Kaufman, A.: The magic volume lens: An interactive focus+context technique for volume rendering. In: Proceedings of the Conference on Visualization, VIS, pp. 367–374. IEEE Computer Society (2005). doi:10.1109/VISUAL.2005.1532818

  11. Ropinski, T., Viola, I., Biermann, M., Hauser, H., Hinrichs, K.: Multimodal visualization with interactive closeups. In: Proceeding of the Theory and Practice of Computer Graphics Conference, pp. 17–24. Eurographics Association (2009)

  12. Hsu, W.H., Ma, K.L., Correa, C.: A rendering framework for multiscale views of 3D models. ACM Trans. Graph. 30(6), 131:1–131:10 (2011). doi:10.1145/2070781.2024165

    Article  Google Scholar 

  13. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving volume rendering. In: Proceedings of the 7th Joint Eurographics/IEEE VGTC Conference on Visualization, EUROVIS, pp. 69–76. Eurographics Association, Aire-la-Ville, Switzerland (2005). doi:10.2312/VisSym/EuroVis05/069-076

  14. Hauser, H., Mroz, L., Italo Bischi, G., Gröller, M.: Two-level volume rendering. IEEE Trans. Vis. Comput. Graph. 7(3), 242–252 (2001). doi:10.1109/2945.942692

    Article  Google Scholar 

  15. Csébfalvi, B., Mroz, L., Hauser, H., König, A., Gröller, E.: Fast visualization of object contours by non-photorealistic volume rendering. Comput. Graph. Forum 20(3), 452–460 (2001). doi:10.1111/1467-8659.00538

    Article  Google Scholar 

  16. Ebert, D., Rheingans, P.: Volume illustration: Non-photorealistic rendering of volume models. In: Proceedings of the Conference on Visualization, VIS, pp. 195–202. IEEE Computer Society Press, Los Alamitos, CA, USA (2000). doi:10.1109/VISUAL.2000.885694

  17. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). doi:10.1109/TSSC.1968.300136

    Article  Google Scholar 

  18. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959). doi:10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  19. Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B.: The angular-metric traveling salesman problem. SIAM J. Comput. 29(3), 697–711 (2000). doi:10.1137/S0097539796312721

    Article  MathSciNet  MATH  Google Scholar 

  20. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 151–160. ACM, New York, USA (1986). doi:10.1145/15922.15903

  21. Chen, H., Hesser, J., Männer, R.: Ray casting free-form deformed-volume objects. J. Vis. Comp. Animat. 14(2), 61–72 (2003). doi:10.1002/vis.305

    Article  Google Scholar 

  22. Rezk-Salama, C., Scheuering, M., Soza, G., Greiner, G.: Fast volumetric deformation on general purpose hardware. In: Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, HWWS, pp. 17–24. ACM, New York, USA (2001). doi:10.1145/383507.383517

  23. Westermann, R., Rezk-Salama, C.: Real-time volume deformations. Comput. Graph Forum 20(3), 443–451 (2001). doi:10.1111/1467-8659.00537

    Article  Google Scholar 

  24. McGuffin, M.J., Tancau, L., Balakrishnan, R.: Using deformations for browsing volumetric data. In: Proceedings of the Conference on Visualization, VIS, pp. 401–408. IEEE Computer Society, Washington, DC, USA (2003). doi:10.1109/VISUAL.2003.1250400

  25. Correa, C., Silver, D., Chen, M.: Feature aligned volume manipulation for illustration and visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1069–1076 (2006). doi:10.1109/TVCG.2006.144

    Article  Google Scholar 

  26. Correa, C.D., Silver, D., Chen, M.: Discontinuous displacement mapping for volume graphics. In: Proceedings of the Eurographics/IEEE VGTC Workshop on Volume Graphics, pp. 9–16. Eurographics Association, Boston, Massachusetts, USA (2006). doi:10.2312/VG/VG06/009-016

  27. Gagvani, N., Kenchammana-Hosekote, D., Silver, D.: Volume animation using the skeleton tree. In: Proceedings of the IEEE Symposium on Volume Visualization, VVS, pp. 47–53. ACM, New York, USA (1998). doi:10.1145/288126.288152

  28. Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Model. IM 56(6), 462–478 (1994). doi:10.1006/cgip.1994.1042

    Article  Google Scholar 

  29. Chuang, J.H., Tsai, C.H., Ko, M.C.: Skeletonisation of three-dimensional object using generalized potential field. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1241–1251 (2000). doi:10.1109/34.888709

    Article  Google Scholar 

  30. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21, 945–955 (2005). doi:10.1007/s00371-005-0308-0

    Article  Google Scholar 

  31. Grigorishin, T., Abdel-Hamid, G., Yang, Y.: Skeletonisation: an electrostatic field-based approach. Pattern Anal. Appl. 1, 163–177 (1998). doi:10.1007/BF01259366

    Article  MATH  Google Scholar 

  32. Galyean, T.A., Hughes, J.F.: Sculpting: An interactive volumetric modeling technique. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 267–274. ACM, New York, USA (1991). doi:10.1145/122718.122747

  33. Wang, S.W., Kaufman, A.E.: Volume sculpting. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, I3D, pp. 151–156, 214. ACM, New York, USA (1995). doi:10.1145/199404.199430

  34. Ferley, E., Cani, M.P., Gascuel, J.D.: Practical volumetric sculpting. Vis. Comput. 16, 469–480 (2000). doi:10.1007/PL00007216

    Article  MATH  Google Scholar 

  35. Imanishi, K., Nakao, M., Kioka, M., Mori, M., Yoshida, M., Takahashi, T., Minato, K.: Interactive bone drilling using a 2D pointing device to support microendoscopic discectomy planning. Int. J. Comput. Assist. Radiol. Surg. 5, 461–469 (2010)

    Article  Google Scholar 

  36. Cannon, J.W., Thurston, W.P.: Group invariant Peano curves. Geom. Topol. 11(3), 1315–1355 (2007). doi:10.2140/gt.2007.11.1315

    Article  MathSciNet  MATH  Google Scholar 

  37. Van Emmerik, M.J.: A direct manipulation technique for specifying 3D object transformations with a 2D input device. Comput. Graph. Forum 9(4), 355–361 (1990). doi:10.1111/j.1467-8659.1990.tb00427.x

    Article  Google Scholar 

  38. Roberts, M., Packer, J., Sousa, M.C., Mitchell, J.R.: A work-efficient GPU algorithm for level set segmentation. Proceedings of the Conference on High Performance Graphics. HPG, pp. 123–132. Eurographics Association, Aire-la-Ville, Switzerland (2010)

  39. Cornea, N., Silver, D., Min, P.: Curve-skeleton applications. In: Proceedings of the Conference on Visualization, VIS, pp. 95–102. IEEE Computer Society (2005). doi:10.1109/VISUAL.2005.1532783

  40. Samavati, F.F., Bartels, R.H., Olsen, L.: Local B-spline multiresolution with examples in iris synthesis and volumetric rendering. In: Yanushkevich, S.N., Gavrilova, M.L., Wan, P.S.P., Srihari, S.N. (eds.), Image Pattern Recognition: Synthesis and Analysis in Biometrics, Series in Machine Perception and Artificial Intelligence, vol. 67, pp. 65–102. World Scientific Publishing (2007)

  41. Hanson, A.J., Ma, H.: Parallel transport approach to curve framing. Tech. rep., Indiana University (1995)

  42. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, ACM, pp. 517–524. ACM, New York, USA (1968). doi:10.1145/800186.810616

  43. Kitware: Visualization toolkit (VTK) version 5.10.1. (2012). http://www.vtk.org

  44. Winter, A.S., Chen, M.: Image-swept volumes. Comput. Graph Forum 21(3), 441–450 (2002). doi:10.1111/1467-8659.t01-1-00604

    Article  Google Scholar 

  45. Stichting Blender Foundation.: Blender (2012). http://www.blender.org

  46. Tiede, U., Schiemann, T., Höhne, K.H.: High quality rendering of attributed volume data. In: Proceedings of the Conference on Visualization. VIS, pp. 255–262. IEEE Computer Society, Los Alamitos, CA, USA (1998)

  47. Hasan, M., Samavati, F.F., Sousa, M.C.: Balanced multiresolution for symmetric/antisymmetric filters. Graph. Models 78, 36–59 (2015). doi:10.1016/j.gmod.2015.01.001

    Article  Google Scholar 

  48. Renka, R.J.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Softw. 14(2), 139–148 (1988). doi:10.1145/45054.45055

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmudul Hasan.

Additional information

Supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, Alberta Innovates—Technology Futures (AITF), Alberta Enterprise and Advanced Education, and Network of Centres of Excellence (NCE) of Canada in Graphics, Animation and New Media (GRAND).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packer, J.F., Hasan, M. & Samavati, F.F. Illustrative multilevel focus+context visualization along snaking paths. Vis Comput 33, 1291–1306 (2017). https://doi.org/10.1007/s00371-016-1217-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1217-0

Keywords

Mathematics Subject Classification

Navigation