Skip to main content
Log in

Relationship of Maastrichtian–Thanetian benthic foraminiferal species diversity, palaeooxygenation, and palaeoproductivity in shallow waters of the Western Desert, Egypt

  • Research
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Benthic foraminiferal analysis (315 samples, 16,271 specimens) of the shallow water (< 100 m) Maastrichtian–Thanetian rocks from the Dakhla Oasis (Western Desert, Egypt) was studied to infer the inter–relationships between species diversity, palaeooxygenation, palaeoproductivity, and palaeodepth and changes at the Cretaceous–Paleogene (K/Pg) boundary. Positive and significant correlations are noted between these proxies, suggesting a well-oxygenated oligotrophic environment. However, a brief interval (mid–lower Maastrichtian) of increased palaeoproductivity with reduced diversity and oxygenation (ventilation) is noted (a characteristic of mesotrophic–eutrophic settings) that coincides with very shallow waters during a highstand system tract (HST) and dominated by the dysoxic agglutinated species Ammobaculites khargaensis. The diversity index, Fisher’s α (< 5), and paleodepth proxy (foraminiferal wall structure types) also suggest a shallow neritic (largely littoral) depth for the entire study interval. At the bottom of the study section (Planktic Foraminiferal Zones CF8b-CF7), species diversity, palaeooxygenation, and palaeoproductivity are high. From the K/Pg boundary to the post-K/Pg period, these variables are low and fluctuate with moderate species dominance. Data suggests an overall 40% benthic foraminiferal species (38% of agglutinated and 40% of calcareous extinct species) extinction rate after the K/Pg hiatus. The period immediately following the K/Pg boundary is characterized by increased basinal ventilation and decreased palaeoproductivity, which are attributed to changes in sea level and concurrent regional subsidence. However, as stable as the community structure was at or just after the K/Pg boundary, the changes in species composition (assemblage) were dramatic and marked by a change from a pre–K/Pg agglutinated–dominated fauna (HaplophragmoidesAmmobaculites) to a post–K/Pg calcareous one (CibicodoidesCibicidesAnomalinoides).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

References

  • Abdel-Kireem MR, Samir AM (1995) Biostratigraphic implications of the Maastrichtian–Lower Eocene sequence at the North Gunna section, Farafra Oasis, Western Desert, Egypt. Marine Micropalaeontology 26:329–340

    Article  Google Scholar 

  • Alegret L (2007) Recovery of the deep-sea floor after the Cretaceous/Paleogene boundary event: the benthic foraminiferal record in the Basque–Cantabrian basin and in South-eastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 255:181–194

    Article  Google Scholar 

  • Alegret L, Ortiz S (2006) Global extinction event in benthic foraminifera across the Paleocene/Eocene boundary at the Dababiya Stratotype section. Micropaleontology 52:433–447

    Article  Google Scholar 

  • Alegret L, Ortiz S (2007) Global extinction event in benthic foraminifera, Paleocene/Eocene boundary, Dababiya Stratotype section. Micropaleontology 52:433–447

    Article  Google Scholar 

  • Alegret L, Thomas E (2005) Cretaceous/Paleogene boundary bathyal palaeo–environments in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: the benthic foraminiferal record. Palaeogeogr Palaeoclimatol Palaeoecol 224:53–82

    Article  Google Scholar 

  • Alegret L, Thomas E (2009) Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event. Marine Micropalaeontology 73:105–116

    Article  Google Scholar 

  • Alegret L, Thomas E (2013) Benthic foraminifera across the Cretaceous/Paleogene boundary in the Southern Ocean (ODP Site 690): Diversity, food and carbonate saturation. Marine Micropalaeontology 105:40–51

    Article  Google Scholar 

  • Alegret L, Molina E, Thomas E (2001) Benthic foraminifera at the Cretaceous/tertiary boundary around the Gulf of Mexico. Geology 29:891–894

    Article  Google Scholar 

  • Alegret L, Molina E, Thomas E (2003) Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): palaeoenvironmental inferences. Marine Micropalaeontology 48:251–279

    Article  Google Scholar 

  • Alegret L, Thomas E, Lohmann KC (2012) End–Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci 109:728–732

    Article  Google Scholar 

  • Ayyad SN, Faris M, El Nahass HA, Saad KAA (2003) Planktonic Foraminiferal and Calcareous Nannofossil biostratigraphy from the upper Cretaceous–Lower Eocene successions in Northeast Sinai, Egypt. The 3rd International Conference on the Geology of Africa, pp 649–683

    Google Scholar 

  • Beckmann, J. P., El Heiny, I., Kerdany, M. T., Said, R., Viotti, L. 1969. Standard planktonic zones in Egypt. In: Proc. 1st International Conference on Planktic Fossils (Geneva, 1967) 1, 92–103.

    Google Scholar 

  • Berggren WA (1974) Late Palaeocene–early Eocene benthonic foraminiferal biostratigraphy and palaeoecology of Rockall Bank. Micropalaeontology 20:426–448

    Article  Google Scholar 

  • Bernhard RP (1986) Late quaternary benthic foraminifera of the Colombia Basin and Cayman Trough, Caribbean Sea. M.S. thesis. Louisiana State University, Baton Rouge, USA, p 185

    Google Scholar 

  • Birch H, Coxall H, Pearson P (2012) Evolutionary ecology of early Palaeocene planktonic foraminifera: size, depth habitat and symbiosis. Palaeobiology 38:374–390

    Article  Google Scholar 

  • Birch HS, Coxall HK, Pearson PN, Kroon D, Schmidt DN (2016) Partial collapse of the marine carbon pump after the Cretaceous–Paleogene boundary. Geology. https://doi.org/10.1130/G37581.1

    Book  Google Scholar 

  • Brinkhuis H, Bujak JP, Smit J, Versteegh GJM, Visscher H (1998) Dinoflagellate–based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 141:67–83

    Article  Google Scholar 

  • Buzas MA, Gibson TG (1969) Species diversity: benthonic foraminifera in western North Atlantic. Science 163:72–75

    Article  Google Scholar 

  • Cetean CG, Ramona Bălc R, Kaminski MA, Filipescu S (2011) Integrated biostratigraphy and palaeoenvironments of an upper Santonian – upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretac Res 32:575–590

    Article  Google Scholar 

  • Chamney TP (1976) Foraminiferal morphogroup symbol for palaeoenvironmental interpretation of drill cutting samples: arctic America. Maritime Sediments, Special Publication 1B:585–624

    Google Scholar 

  • Chan SA, Kaminski MA, Al Ramadan K, Babalola LO (2017) Foraminiferal biofacies and depositional environments of the Burdigalian mixed carbonate and siliciclastic Dam Formation, Al–Lidam area, Eastern Province of Saudi Arabia. Palaeogeogr Palaeoclimatol Palaeoecol 469:122–137

    Article  Google Scholar 

  • Cherif OH, Hewaidy AA (1986) The Maastrichtian planktic foraminiferal fauna of the Abu Tartur area, Western Desert. Egypt Egyptian Journal Geology 31:217–231

    Google Scholar 

  • Coccioni R, Marsili A (2007) The response of benthic foraminifera to the K/Pg boundary biotic crisis at Elles (northwestern Tunisia). Palaeogeogr Palaeoclimatol Palaeoecol 255:157–180

    Article  Google Scholar 

  • Corliss BH (1985) Microhabitats of benthic foraminifera within the deep–sea sediments. Nature 314:435–438

    Article  Google Scholar 

  • Corliss BH, Chen C (1988) Morphotype patterns of Norwegian Sea deep sea benthic foraminifera and ecological implications. Geology 16:716–719

    Article  Google Scholar 

  • Corliss BH, Emerson S (1990) Distribution of Rose bengal stained deep–sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine. Deep-Sea Res 37:381–400

    Article  Google Scholar 

  • Coxall, H.K., d’Hondt, S., Zachos, J.C. 2006. Pelagic evolution and environmental recovery after the Cretaceous–Paleogene mass extinction. Geology 34, 297–300.

  • Culver SJ (2003) Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Marine Micropalaeontology 47:177–226

    Article  Google Scholar 

  • d'Hondt S (2005) Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu Rev Ecol Syst 36:295–317

    Article  Google Scholar 

  • Den Dulk M, Reichart GJ, Memon GM, Roelofs EMP, Zachariasse WJ, van der Zwaan GJ (1988) Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea. Marine Micropalaeontology 35:43–66

    Article  Google Scholar 

  • El-Azabi MH, El-Araby A (2000) Depositional cycles: an approach to the sequence stratigraphy of the Dakhla Formation, west Dakhla–Farafra stretch, Western Desert, Egypt. J Afr Earth Sci 30:971–996

    Article  Google Scholar 

  • El-Bassiouni A, Ayyad SN, Shahin AM, Shahin SM (2003) Planktonic foraminiferal bio–and– chronostratigraphy of the upper Maastrichtian–middle Eocene succession in northeastern Sinai. Egypt Journal of Palaeontology 3:109–140

    Google Scholar 

  • Esmeray-Senlet S, Wright J, Olsson R, Miller K, Browning J, Quan T (2015) Evidence for reduced export productivity following the Cretaceous/Paleogene mass extinction. Palaeoceanography 30:718–738

    Article  Google Scholar 

  • Faris M, Allam A, Marzouk AM (1985) Biostratigraphy of the Late Cretaceous –early tertiary rocks in the Nile Valley (Qena region). Egypt Ann Geological Survey of Egypt 15:278–300

    Google Scholar 

  • Farouk S (2014) Maastrichtian carbon cycle changes and planktonic foraminiferal bioevents at Gebel Matulla, westecentral Sinai, Eqypt. Cretac Res 50:238–251

    Article  Google Scholar 

  • Farouk S (2016) Paleocene stratigraphy in Egypt. J Afr Earth Sci 113:126–152

    Article  Google Scholar 

  • Farouk S, EL-Sorogy E (2015) Danian / Selandian unconformity in the central and southern Western Desert of Egypt. J Afr Earth Sci 103:42–53

    Article  Google Scholar 

  • Farouk S, Faris M (2012) Late Cretaceous calcareous nannofossil and planktonic foraminiferal bioevents of the shallow–marine carbonate platform in the Mitla Pass, west central Sinai, and Egypt. Cretac Res 33:50–65

    Article  Google Scholar 

  • Farouk S, Jain S (2016) Benthic foraminiferal response to relative sea–level changes in the Maastrichtian–Danian succession at the Dakhla Oasis, Western Desert, Egypt. Geol Mag 2016:1–18

    Google Scholar 

  • Farouk S, Jain S (2017) Sea–level changes in the Palaeocene (Danian–Thanetian) succession at the Dakhla Oasis, Western Desert, Egypt: implications from benthic foraminifera. Proc Geol Assoc 128:764–778

    Article  Google Scholar 

  • Fontanier C, Jorissen FJ, Licari L, Alexandre A, Anschutz P, Carbonel P (2002) Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition and microhabitats. Deep–Sea Research I 49:751–785

    Article  Google Scholar 

  • Friedrich O, Erbacher J (2006) Benthic foraminiferal assemblages from Demerara Rise (ODP Leg 207, western Tropical Atlantic): possible evidence for a progressive opening of the Equatorial Atlantic Gateway. Cretac Res 27:377–397

    Article  Google Scholar 

  • Friedrich O, Hemleben C (2007) Early Maastrichtian benthic foraminiferal assemblages from the western North Atlantic (Blake Nose) and their relation to palaeoenvironmental changes. Marine Micropalaeontology 62:31–44

    Article  Google Scholar 

  • Friedrich O, Nishi H, Pross J, Schmiedl G, Hemleben C (2005) Interruptions of the Oceanic Anoxic Event 1b (Lower Albian, Middle Cretaceous): evidence from benthic foraminiferal repopulation events. Palaios 20:64–77

    Article  Google Scholar 

  • Friedrich O, Erbacher J, Wilson PA, Moriya K, Mutterlose J (2009) Paleoenvironmental changes across the Mid Cenomanian Event in the tropical Atlantic Ocean (Demerara Rise, ODP Leg 207) inferred from benthic foraminiferal assemblages. Mar Micropaleontol 71:28–40

    Article  Google Scholar 

  • Galal G, Kamel S (2007) Early Paleogene Planktonic foraminiferal biostratigraphy at the Monastery of Saint Paul, Southern Galala, Eastern Desert, Egypt. Rev Paléobiol 26:391–402

    Google Scholar 

  • Gebhardt H, Kuhnt W, Holbourn A (2004) Foraminiferal response to sea level change, organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco. Mar Micropaleontol 53:133–157

    Article  Google Scholar 

  • Giusberti L, Coccioni R, Sprovieri M, Tateo F (2009) Perturbation at the sea floor during the Paleocene–Eocene thermal maximum: evidence from benthic foraminifera at Contessa Road, Italy. Mar Micropaleontol 70:102–119

    Article  Google Scholar 

  • Gooday AJ (2003) Benthic foraminifera (Protista) as tools in deepwater palaeoceanography: environmental influences on faunal characteristics. Adv Mar Biol 46:1–90

    Article  Google Scholar 

  • Gooday AJ, Bett BJ, Shires R, Lambshead PJD (1998) Deep–sea benthic foraminiferal diversity in the NE Atlantic and NW Arabian sea: a synthesis. Deep–Sea Research II 45:165–201

    Article  Google Scholar 

  • Haq BU (2014) Cretaceous eustasy revisited. Global Planet. Change 113:44–58

    Google Scholar 

  • Heinz P, Ruepp D, Hemleben C (2004) Benthic foraminifera assemblages at Great Meteor Seamount. Mar Biol 144:985–998

    Article  Google Scholar 

  • Hendriks F, Luger P, Kallenbach H, Schroeder JH (1984) Stratigraphical and sedimentological framework of the Kharga–Sinn El–Kaddab stretch (western and southern part of the Upper Nile Basin), Western Desert, Egypt. Berliner Geowiss Abh, (A) 50:117–151

    Google Scholar 

  • Hess S, Kuhnt W (2005) Neogene and Quaternary palaeoceanographic changes in the southern South China Sea (Site 1143): the benthic foraminiferal record. Marine Micropalaeontology 54:63–87

    Article  Google Scholar 

  • Hollis CJ, Strong CP, Rodgers KA, Rogers KM (2003) Palaeoenvironmental changes across the Cretaceous/Tertiary boundary at Flaxbourne River and Woodside Creek, Eastern Marlborough New Zealand. N Z J Geol Geophys 46:177–197

    Article  Google Scholar 

  • Hsü KJ, McKenzie J (1985) A “Strangelove Ocean” in the earliest Tertiary. Geophys Monogr 32:487–492

    Google Scholar 

  • Huber BT (1988) Upper Campanian–Paleocene foraminifera from the James Ross Island region, Antarctic Peninsula. Geological Society of America, Memoir 169:163–252

    Article  Google Scholar 

  • Hull PM, Norris RD (2011) Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: New insights from biogenic barium. Palaeoceanography 26(3):PA 3205. https://doi.org/10.1029/2010PA002082

    Article  Google Scholar 

  • Issawi B (1972) Review of Upper Cretaceous–Lower Tertiary stratigraphy in central and southern Egypt. Am Assoc Pet Geol Bull 56:1448–1473

    Google Scholar 

  • Jain S (2011) Changes in Late Neogene Caribbean Benthic Foraminifers: Palaeoproductivity. Diversity and Test Size, Lap Lambert Academic Publishing Gmbh and Co. Kg, Germany, p 150

    Google Scholar 

  • Jain S, Collins LS (2007) Trends in Caribbean palaeoproductivity related to the Neogene closure of the Central American seaway. Marine Micropalaeontology 63:57–74

    Article  Google Scholar 

  • Jain S, Farouk S (2017) Shallow Water Agglutinated Foraminiferal response to Late Cretaceous – early Palaeocene sea–level changes in the Dakhla Oasis, Western Desert, Egypt. Cretac Res 78:240–257

    Article  Google Scholar 

  • Jain S, Collins LS, Hayek L-AC (2007) Relationship of benthic foraminiferal diversity to palaeoproductivity in the Neogene Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 255:223–245

    Article  Google Scholar 

  • Jannink NT, Van der Zwaan GJ, Almogi-Labin A, Duijnstee I, Jorissen FJ (2001) A transfer function for the quantitative reconstruction of oxygen contents in marine palaeoenvironments. Geol Ultraiect 203:161–169

    Google Scholar 

  • Jones RW (1999) Forties Field (North Sea) revisited; a demonstration of the value of historical micropalaeontontological data. In: Jones RW, Simmons MD (eds) Biostratigraphy in Production and Development Geology. Geological Society. Special Publication 152, London, pp 185–200

    Google Scholar 

  • Jones RW, Charnock MA (1985) Morphogroups of agglutinated foraminifera. Their life positions and feeding habits and potential applicability in (palaeo) ecological studies. Rev Paléobiol 4:311–320

    Google Scholar 

  • Jones RW, Pickering KT, BouDagher-Fadel M, Matthews S (2005) Preliminary observations on the micropalaeontological characterisation of submarine fan / channel sub–environments, Ainsa system, south–central Pyrenees, Spain. In: Powell AJ, Riding JB (eds) Recent Developments in Applied Biostratigraphy: The Micropalaeontological Society. Special Publication 1, pp 55–68

    Chapter  Google Scholar 

  • Jorissen FJ (1988) Benthic foraminifera from the Adriatic Sea: principles of phenotypic variation. Utrecht Micropalaeontological Bulletin 37:174

  • Jorissen FJ (1999) Benthic foraminiferal microhabitats below the sediment–water interface. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic Press, Dordrecht, pp 161–179

    Chapter  Google Scholar 

  • Jorissen FJ, Barmawidjaja DM, Puskaric S, Van der Zwaan GJ (1992) Vertical distribution of benthic foraminifera in the northern Adriatic Sea; the relation with the organic flux. Marine Micropalaeontology 19:1–2

    Article  Google Scholar 

  • Jorissen FJ, De Stigter HC, Widmark JG (1995) A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropalaeontology 22:3–15

    Article  Google Scholar 

  • Jorissen FJ, Fontanier C, Thomas E (2007) Palaeoceanographical proxies based on deep–sea benthic foraminiferal assemblage characteristics. In: Hillaire-Marcel C, De Vernal A (eds) Proxies in Late Cenozoic Palaeoceanography, Volume 1. Developments in Marine Geology, pp 263–325

    Chapter  Google Scholar 

  • Kaiho K (1991) Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep–sea circulation. Palaeogeogr Palaeoclimatol Palaeoecol 83:65–85

    Article  Google Scholar 

  • Kaiho K (1994) Benthic foraminiferal dissolved–oxygen index and dissolved–oxygen levels in the modern ocean. Geology 22:719–722

    Article  Google Scholar 

  • Kaminski MA, Gradstein FM (2005) Atlas of Paleogene cosmopolitan deepwater agglutinated foraminifera. Grzybowski Foundation Special. Publication 10:574

    Google Scholar 

  • Kaminski MA, Boersma A, Tyszka J, Holbourn A (1995) Response of deep–water agglutinated foraminifera to dysoxic conditions in the California borderland basins. In: Kaminski MA, Geroch S, Gasinski MA (eds) Proceedings of the Fourth International Workshop on Agglutinated Foraminifera: Grzybowski Foundation Special Publication 3, pp 131–140

    Google Scholar 

  • Kaminski MA, Aksu A, Box M, Hiscott RN, Filipescu S, Al-Salameen M (2002) Late Glacial to Holocene benthic foraminifera in the Marmara Sea: implications for Black Sea–Mediterranean Sea connections following the last deglaciation. Mar Geol 190:165–202

    Article  Google Scholar 

  • Keller G (1988) Biotic turnover in benthic foraminifera across the Cretaceous–Tertiary boundary at El Kef, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 66:153–171

    Article  Google Scholar 

  • Keller G (1992) Paleoecologic response of Tethyan benthic foraminifera to the Cretaceous–Tertiary boundary transition. In: Takayanagi Y, Saito T (eds) Studies in Benthic Foraminifera. Tokai University Press, Tokyo, pp 77–91

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stueben D, Kramar U, Berner Z, Li L, Von Salis Perch-Neilsen K (1998) The Cretaceous–Tertiary transition on the shallow Saharan Platform of southern Tunisia. Geobios 30:951–975

    Article  Google Scholar 

  • Kender S, Kaminski MA, Jones RW (2008a) Oligocene deep–water agglutinated foraminifera from the Congo Fan, offshore Angola: palaeoenvironments and assemblage distributions. In: Kaminski MA, Coccioni R (eds) Proceedings of the Seventh International Workshop on Agglutinated Foraminifera: Grzybowski Foundation Special Publication 13, pp 107–156

    Google Scholar 

  • Kender S, Kaminski MA, Jones RW (2008b) Early to middle Miocene foraminifera from the deep–sea Congo Fan, offshore Angola. Micropaleontology 54:477–568

    Article  Google Scholar 

  • Khalil H, Al Sawy S (2014) Integrated biostratigraphy, stage boundaries and Paleoclimatology of the Upper Cretaceous–Lower Eocene successions in Kharga and Dakhala Oases, Western Desert, Egypt. J Afr Earth Sci 96:220–242

    Article  Google Scholar 

  • Koutsoukos AM, Hart MB (1990) Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case of study from the Sergipe Basin, Brazil. Trans R Soc Edinb Earth Sci 81:221–246

    Article  Google Scholar 

  • Langer MR (1993) Epiphytic foraminifera. Mar Micropaleontol 20:235–265

    Article  Google Scholar 

  • Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hassler RR, Pawson D (2001) Environmental influences on regional deep–sea species diversity. Annu Rev Ecol Syst 32:51–93

    Article  Google Scholar 

  • Li L, Keller G, Stinnesbeck W (1999) The late Campanian and Maastrichtian in northwestern Tunisia: palaeoenvironmental inferences from lithology, macrofauna and benthic foraminifera. Cretac Res 20:231–252

    Article  Google Scholar 

  • Li L, Keller G, Adatte G, Stinnesbeck W (2000) Late Cretaceous sea level changes in Tunisia: a multi–disciplinary approach. Geological Society of London 157:447–458

    Article  Google Scholar 

  • Linke P (1992) Metabolic adoptions of deep–sea benthic foraminifera to seasonally varying food input. Mar Ecol Prog Ser 81:51–63

    Article  Google Scholar 

  • Linke P, Lutze GF (1993) Microhabitat preferences of benthic foraminifera ^ a static concept or a dynamic adaptation to optimize food acquisition? Marine Micropalaeontology 20:215–234

    Article  Google Scholar 

  • Luger P (1985) Stratigraphie der marinen Oberkreide und des Alttertiars im Sudwestlichen Obernil–Becken (SW–Aegypten) unterbesonderer berucksichtigung der mikropaläontologie, paläoekologie und paläogeographie. Berliner geowiss. Abh. (A) 63, Berlin, pp 1–150

    Google Scholar 

  • Luger P (1988) Maastrichtian to Paleocene facies evolution and Cretaceous/Tertiary boundary in middle and southern Egypt. Rev Espan Micropaleontol, Numero Extraord:83–90

  • Mackensen A, Grobe H, Kuhn G, Fütterer DK (1990) Benthic foraminiferal assemblages from the eastern Weddell Sea between 68° and 73°S: distribution, ecology and fossilization potential. Marine Micropalaeontology 16:241–283

    Article  Google Scholar 

  • Mackensen A, Schmiedl G, Harloff J, Giese M (1995) Deep–sea foraminifera in the South Atlantic Ocean: ecology and assemblage generation. Micropalaeontology 41:342–358

    Article  Google Scholar 

  • Miller KG, Janecek TR, Katz ME, Keil DJ (1987) Stable carbon and oxygen isotope record of benthic foraminifera from Paleocene–Eocene sediments. Paleoceanography 2:741–761

    Article  Google Scholar 

  • Murray JW (2001) The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropalaeontology 41:1–8

    Article  Google Scholar 

  • Murray JW, Alve E, Jones BW (2011) A new look at modern agglutinated benthic foraminiferal morphogroups: their value in palaeoecological interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 309:229–241

    Article  Google Scholar 

  • Nagy J (1992) Environmental significance of foraminiferal morphogroups in Jurassic North Sea deltas. Palaeogeography, Palaeoecology, Palaeoclimatology 95:111–134

    Article  Google Scholar 

  • Nagy J, Pilskog B, Wilhelmsen R (1990) Facies controlled distribution of foraminifera in the Jurassic North Sea Basin. In: Hemleben C, Kaminski MA, Kuhnt W, Scott DB (eds) Papleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera. Kluwer Academic Press, Dordrecht, the Netherlands, pp 621–657

    Chapter  Google Scholar 

  • Nagy J, Gradstein FM, Kaminski MA, Holbourn AEL (1995) Late Jurassic to Early Cretaceous foraminifera of Thakkhola, Nepal: Palaeoenvironments and description of new taxa. In: Kaminski MA, Geroch S, Gasinski MA (eds) Proceedings of the Fourth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication 3, pp 181–209

    Google Scholar 

  • Nagy J, Reolid M, Rodríguez-Tovar FJ (2009) Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Res 28:214–221

    Article  Google Scholar 

  • Nagy J, Hess S, Alve E (2010) Environmental significance of foraminiferal assemblages dominated by small–sized Ammodiscus and Trochammina in Triassic and Jurassic delta–influenced deposits. Earth Sci Rev 99:31–49

    Article  Google Scholar 

  • Obaidalla NA (2005) Complete Cretaceous/Paleogene (K/P) boundary section at Wadi Nukhul, southwestern Sinai, Egypt: inference from planktic foraminiferal biostratigraphy. Rev Paléobiol 24:201–224

    Google Scholar 

  • Olsson RK (1960) Foraminifera of latest Cretaceous and earliest Tertiary age in the New Jersey coastal plain. J Paleontol 34:1–58

    Google Scholar 

  • Olsson RK, Chengjie L, van Fossen M (1996) The Cretaceous–Tertiary catastrophic event at Millers Ferry, Alabama. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Geological Society of America, Special Paper 307, pp 263–277

    Google Scholar 

  • Orabi HO (1995) Biostratigraphy and paleoecology of the Campanian–Paleocene agglutinated foraminifera from Gebel Um El Ghanayim Kharga Oasis, Egypt. Science Journal Faculty of Science, Menoufia University 11:25–68

    Google Scholar 

  • Orabi OH (2000) Foraminiferal morphogroups and paleoenvironments of some Upper Cretaceous exposures in Egypt. Egypt J Geol 44:359–397

    Google Scholar 

  • Orabi OH, Khalil HM (2014) Calcareous benthonic foraminifera across the Cretaceous / Palaeocene transition of Gebel Um El–Ghanayem, Kharga Oasis, Egypt. J Afr Earth Sci 96:110–121

    Article  Google Scholar 

  • Peryt, D., Alegret, L., Molina, E. 2002. The Cretaceous/Paleogene (K/P) boundary at Aìn Settara, Tunisia: restructuring of benthic foraminiferal assemblages. Terra Nova 14, 101–107.

  • Peryt D, Alegret L, Molina E (2004) Agglutinated foraminifers and their response to the Cretaceous/Paleogene (K/P) boundary event at Ain Settara, Tunisia. In: Bubik M, Kaminski MA (eds) Proceedings of the Sixth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication 8, pp 393–412

    Google Scholar 

  • Plummer HJ (1927) Foraminiferal of the Midway Formation in Texas. University of Texas Bulletin 2644:3–206

    Google Scholar 

  • Preece RC, Kaminski MA, Dignes TW (1999) Miocene benthonic foraminiferal morphogroups in an oxygen minimum zone, offshore Cabinda. In: Cameron NR, Bate RH, Clure VS (eds) The oil and gas habitats of the South Atlantic: Geological Society. Special Publications 153, London, pp 267–282

    Google Scholar 

  • Rathburn AE, Corliss BH (1994) The ecology of living (stained) deep–sea benthic foraminifera from the Sulu Sea. Palaeoceanography 9:87–150

    Article  Google Scholar 

  • Reolid M, Rodríguez-Tovar FJ, Nagy J, Olóriz F (2008) Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, Southern Spain): Characterisation of biofacies and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 261:280–299

    Article  Google Scholar 

  • Romein AJT, Smit J (1981) The Cretaceous/Tertiary boundary: calcareous nannofossils and stable isotopes. Proc K Ned Akad Wet Ser B 84:295–314

    Google Scholar 

  • Scheibner C, Kuss J, Speijer RP (2003) Stratigraphic modeling of carbonate plateform–to–basin sediments (Maastrichtian to Palaeocene) in the Eastern Desert, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 3136:1–23

    Google Scholar 

  • Schmiedl G, Mackensen A, Müller PJ (1997) Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses. Marine Micropalaeontology 32:249–287

    Article  Google Scholar 

  • Schmitz B, Keller G, Stenvall O (1992) Stable isotope and foraminiferal changes across the Cretaceous–Tertiary boundary at Stevns Klint, Denmark: arguments for long–term oceanic instability before and after bolide–impact event. Palaeogeogr Palaeoclimatol Palaeoecol 96:233–260

    Article  Google Scholar 

  • Sen Gupta BK (1999) Introduction to modern Foraminifera. In: Sen Gupta, B.K. (Ed.), Systematics of Modern Foraminifera. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 7–36

    Book  Google Scholar 

  • Sen Gupta BK, Machain-Castillo ML (1993) Benthic foraminifera in oxygen–poor habitats. Marine Micropalaeontology 20:3–4

    Article  Google Scholar 

  • Severin KP, Erskian MG (1981) Laboratory experiments on the vertical movement of Quinqueloculina impressa Reuss through sand. J Foraminifer Res 11:133–136

    Article  Google Scholar 

  • Sibert E, Hull P, Norris D (2014) Resilience of Pacific pelagic fish across the Cretaceous/Paleogene mass extinction. Nat Geosci 7:667–670

    Article  Google Scholar 

  • Sikora PJ (1984) Quantitative analysis of Foraminifera from the Kemp Clay, north–central Texas. MS Thesis,. University of Texas

    Google Scholar 

  • Sjoerdsma PG, Van der Zwaan GJ (1992) Simulating the effect of changing organic flux and oxygen content on the distribution of benthic foraminifers. Marine Micropalaeontology 19:1–2

    Article  Google Scholar 

  • Sliter WV (1968) Upper Cretaceous foraminifera from southern California and northwestern Baja California. The University of Kansas Paleontoogical Contribution, Mexico, pp 1–141 Art. 7

    Google Scholar 

  • Sliter WV, Baker A (1972) Cretaceous bathymetric distribution of benthic foraminifera. J Foraminifer Res 2:167–183

    Article  Google Scholar 

  • Speijer RP, van der Zwaan GJ (1996) Extinction and survivorship of southern Tethyan benthic foraminifera across the Cretaceous/Paleogene boundary. In: Hart MB (ed) Biotic Recovery from Mass Extinction Events. Geological Society Special Publication 102, pp 343–371

    Google Scholar 

  • Sprong J, Kouwenhoven TJ, Bornemann A, Dupuis C, Speijer RP, Stassen P, Steurbaut E (2013) In search of the Latest Danian Event in a paleobathymetric transect off Kasserine Island, north–central Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 379–380:1–16

    Article  Google Scholar 

  • Strougo A (1986) The Velascoensis event: A significant episode of tectonic activity in the Egyptian Paleogene. Neues Jahrb Geol Palaontol Abh 173:253–269

    Google Scholar 

  • Tantawy AA, Keller G, Adatte T, Stinnesbeck W, Kassab A, Schulte P (2001) Maastrichtian to Paleocene depositional environment of the Dakhla Formation, Western Desert, Egypt: Sedimentology, mineralogy, and integrated micro– and macrofossil biostratigraphies. Cretac Res 22:795–827

    Article  Google Scholar 

  • Thomas E (1990) Late Cretaceous–early Eocene mass extinctions in the deep sea. In: Sharpton VL, Ward PD (eds) Global Catastrophes in Earth history. Geological Society of America. Special Publication 247, pp 481–495

    Google Scholar 

  • Thomas E, Gooday AJ (1996) Cenozoic deep–sea benthic foraminifers: tracers for changes in oceanic productivity? Geology 24:355–358

    Article  Google Scholar 

  • Thomas E, Shackleton NJ (1996) The Paleocene–Eocene benthic foraminiferal extinction and stable isotope anomalies. In: Knox RW, Corfield RM, Dunay RE (eds) Correlation of the Early Paleogene in Northwest Europe. Geological Society of London Special Publication 101, pp 401–441

    Google Scholar 

  • Tribovillard N, Dupuis C, Robin E (2000) Sedimentological and diagenetical conditions of the impact level of the Cretaceous/Tertiary boundary in Tunisia: no anoxia required. Bulletin de la Société géologique de France 171:629–636

    Article  Google Scholar 

  • Tyszka J (1994) Response of Middle Jurassic benthic foraminiferal morphogroups to dysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish Carpathians. Palaeogeography, Palaeoecology, Palaeoclimatology 110:55–81

    Article  Google Scholar 

  • van der Akker TJHA, Kaminski MA, Gradstein FM, Wood J (2000) Campanian to Palaeocene biostratigraphy and palaeoenvironments in the Foula Sub–basin, west of the Shetland Islands, UK. J Micropalaeontol 19:23–43

    Article  Google Scholar 

  • Van der Zwaan GJ, Duijnstee IAP, Den Dulk M, Ernst SR, Jannink NT, Kouwenhoven TJ (1999) Benthic foraminifers: proxies or problems? A review of palaeoecological concepts. Earth Sci Rev 46:213–236

    Article  Google Scholar 

  • Voigt S, Gale AS, Jung C, Jenkyns HC (2012) Global correlation of Upper Campanian–Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsl Stratigr 45:25–53

    Article  Google Scholar 

  • Widmark JGV (2000) Biogeography of terminal Cretaceous benthic foraminifera: deep–water circulation and trophic gradients in the deep South Atlantic. Cretac Res 21:367–379

    Article  Google Scholar 

  • Widmark JGV, Malmgren B (1992) Benthic foraminiferal changes across the Cretaceous–Tertiary boundary in the deep sea; DSDP sites 525, 527 and 465. J Foraminifer Res 22:81–113

    Article  Google Scholar 

  • Widmark JGV, Speijer RP (1997) Benthic foraminiferal ecomarker species of the terminal Cretaceous (late Maastrichtian) deepsea Tethys. Mar Micropaleontol 31:135–155

    Article  Google Scholar 

  • Wollenburg JE, Kuhnt W (2000) The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean. Marine Micropalaeontology 40:189–231

    Article  Google Scholar 

  • Wollenburg JE, Mackensen A (1998) Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Marine Micropalaeontology 34:153–185

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Maria-Angela Bassetti, editor of Geo-Marine Letters, and anonymous reviewers for their useful comments that improved this paper. Research Supporting Project Number (RSP-2023/139), King Saud University, Riyadh, Saudi Arabia.

Funding

Filed study and laboratory work funding is provided by King Saud University.

Author information

Authors and Affiliations

Authors

Contributions

Sherif Farouk: ideas; filed works; formulation and evolution of overarching research goals and aims, preparation and writing the initial draft. Management and coordination responsibility for the research activity planning and execution.

Sreepat Jain: writing and idea of the initial paper, preparation, creation, and presentation the data.

Khaled Al-Kahtany, design the idea of the initial paper, preparation, creation, foraminiferal examination.

Fayez Ahmad: performing the experiments and data collection.

Ahmed Abdeldaim: discussion, preparation, and creation.

Corresponding author

Correspondence to Sherif Farouk.

Ethics declarations

Ethics approval

No human participants and/or animals were involved in the making of this manuscript. Hence, no ethics approval is required.

Consent to participate

All authors have given their consent for this publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Appendix. Appendix-Table 1. Percentages of calcareous and agglutinated benthic foraminiferal morphogroups and sub-morphogroups identified in this study with sample numbers (on the left). Appendix-Table 2. Habitat preference of the studied species based on ecology and literature survey. See text for explanation. Appendix-Table 3. Pearson correlation between proxies used in the present study. Diversity indices (Fisher’s α), Palaeooxygenation proxies (Benthic Foraminiferal Oxygen Index (BFOI), and % Oxyphilic taxa), Palaeoproductivity proxies (% High organic–flux species (% HOFS) and Percent Infaunal taxa. Appendix-Table 4. Pearson correlation between % planktic foraminifera (%P) and agglutinated palaeodepth proxies (Littoral represented by simple-walled arenaceous agglutinated foraminifera; Deep littoral represented by complex-walled arenaceous agglutinated foraminifera and Shelf represented by calcareous agglutinated foraminifera). See text for explanation. Appendix-Table 5. Pearson correlation between dominant morohogroups identified in the present study (calcareous benthic foraminiferal morphogroups, CH-A.4, CH-B.4 and CH-B.5; agglutinated benthic foraminiferal morphogroups, AG-A and AG-B.2), Palaeooxygenation proxies (BFOI, and % Oxyphilic taxa), Palaeoproductivity proxies (% HOFS and Infaunal taxa) and palaeodepth proxies (Littoral and Deep littoral; the latter is Deeplit). See text for explanation. Appendix-Table 6. Pearson correlation between species diversity index (Fisher’s α) and palaeodepth proxies (Littoral and Deep littoral). See text for explanation. Appendix-Table 7. List (in order of abundance) of agglutinated (a) and calcareous benthic foraminiferal (b) patterns for Extinction, Immigrant and Survivor taxa noted for long–term interval incorporating taxa from Assemblages 9 to 18. See text for explanation. Appendix-Table 8. Substage (Upper Maastrichtian–Lower Paleocene) list (in order of abundance) of calcareous benthic foraminiferal patterns for Extinction, Immigrant and Survivor taxa noted for long-term. See text for explanation. Appendix-Table 9. Substage (Upper Maastrichtian–Lower Paleocene) list (in order of abundance) of benthic foraminiferal species patterns for Extinction, Immigrant and Survivor taxa noted for long–term. See text for explanation. (DOCX 77 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, S., Jain, S., Al-Kahtany, K. et al. Relationship of Maastrichtian–Thanetian benthic foraminiferal species diversity, palaeooxygenation, and palaeoproductivity in shallow waters of the Western Desert, Egypt. Geo-Mar Lett 43, 4 (2023). https://doi.org/10.1007/s00367-023-00745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00367-023-00745-2

Navigation