Skip to main content

Advertisement

Log in

Oceanic circulation changes during early Pliocene marine ice-sheet instability in Wilkes Land, East Antarctica

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

In the Southern Ocean, unconstrained Westerlies allow for intense mixing between deep waters and the atmosphere. How this system interacts with Antarctic ice sheets and the global ocean circulation is poorly understood due to a paucity of data. The poor abundance and preservation of foraminiferal carbonate in ice-proximal sediments is a major challenge in high-latitude paleoceanography. A new approach is to examine a sediment geochemical record of changing paleoproductivity and sediment redox environment that can be tied to changes in water mass properties. This study focuses on the paleoceanography of the George V Land margin between ~4.7 and 4.3 Ma. This interval at the onset of the early Pliocene Climatic Optimum was characterized by the highest global sea surface temperatures and the lowest sea ice concentrations in East Antarctica in the past 5 million years. At IODP Site U1359, an abrupt increase in Mn/Al ratios ~4.6 Ma indicates an episode of oxic bottom conditions resulting from enhanced wind-driven downwelling of Antarctic surface water. Above, extremely high concentrations of sedimentary barite (Ba excess >40,000 ppm) point to biogenic barite deposition, preservation, and concentration through enhanced upwelling of nutrient-rich Circumpolar Deep Water (CDW). Incursion of CDW onto the continental shelf affected ice discharge and resulted in a stable but reduced ice-sheet configuration over several glacial cycles. The geochemical results along with previous work on Site U1359 for the first time link paleoceanography and cryospheric change based on data from the same high-latitude site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RF, Winckler G (2005) Problems with paleoproductivity proxies. Paleoceanography 20, PA3012. doi:10.1029/2004PA001107

    Google Scholar 

  • Anderson RF, Ali S, Bradtmiller LI, Nielsen SH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–1448

    Article  Google Scholar 

  • Billups K, Ravelo AC, Zachos JC, Norris RD (1999) Link between oceanic heat transport, thermohaline circulation, and the Intertropical Convergence Zone in the early Pliocene Atlantic. Geology 27(4):319–322

    Article  Google Scholar 

  • Bohaty SM, Harwood DM (1998) Southern Ocean Pliocene paleotemperature variation from high-resolution silicoflagellate biostratigraphy. Mar Micropaleontol 33:241–272

    Article  Google Scholar 

  • Bonn WJ, Gingele FX, Grobe H, Mackensen A, Fütterer DK (1998) Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka. Palaeogeogr Palaeoclimatol Palaeoecol 139(3):195–211

    Article  Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci Rev 35:249–284

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88

    Article  Google Scholar 

  • Ciesielski PF, Weaver FM (1974) Early Pliocene temperature changes in the Antarctic seas. Geology 2(10):511–515

    Article  Google Scholar 

  • Cody RD, Levy RH, Harwood DM, Sadler PM (2008) Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeogr Palaeoclimatol Palaeoecol 260(1):92–121

    Article  Google Scholar 

  • Cook CP, van de Flierdt T, Williams T, Hemming SR, Iwai M, Kobayashi M, Jimenez-Espejo FJ, Escutia C, González JJ, Khim BK, McKay RM, Passchier S, Bohaty SM, Riesselman CR, Tauxe L, Sugisaki S, Galindo AL, Patterson MO, Sangiorgi F, Pierce EL, Brinkhuis H, IODP Expedition 318 Scientists (2013) Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geosci 6(9):765–769. doi:10.1038/ngeo1889

    Article  Google Scholar 

  • DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531(7596):591–597

    Article  Google Scholar 

  • Escutia C, Bárcena MA, Lucchi RG, Romero O, Ballegeer AM, Gonzalez JJ, Harwood DM (2009) Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Global Planet Change 69(3):170–184

    Article  Google Scholar 

  • Expedition 318 Scientists (2011) Site U1359. Proceedings of the Integrated Ocean Drilling Program, vol 318. College Station, TX

  • Fagel N, Dehairs F, André L, Bareille G, Monnin C (2002) Ba distribution in surface Southern Ocean sediments and export production estimates. Paleoceanography 17(2):1011. doi:10.1029/2000PA000552

    Article  Google Scholar 

  • Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC (2013) Patterns and mechanisms of early Pliocene warmth. Nature 496(7443):43–49

    Article  Google Scholar 

  • Gallego-Torres D, Romero OE, Martínez-Ruiz F, Kim JH, Donner B, Ortega-Huertas M (2014) Rapid bottom-water circulation changes during the last glacial cycle in the coastal low-latitude NE Atlantic. Quat Res 81(2):330–338

    Article  Google Scholar 

  • Goodge JW, Fanning CM (2010) Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geol Soc Am Bull 122(7-8):1135–1159

    Article  Google Scholar 

  • Hansen MA, Passchier S, Khim BK, Song B, Williams T (2015) Threshold behavior of a marine‐based sector of the East Antarctic Ice Sheet in response to early Pliocene ocean warming. Paleoceanography 30(6):789–801

    Article  Google Scholar 

  • Hendy IL (2010) Diagenetic behavior of barite in a coastal upwelling setting. Paleoceanography 25(4), PA4103. doi:10.1029/2009PA001890

    Article  Google Scholar 

  • Hepp DA, Mörz T, Grützner J (2006) Pliocene glacial cyclicity in a deep-sea sediment drift (Antarctic Peninsula Pacific Margin). Palaeogeogr Palaeoclimatol Palaeoecol 231(1):181–198

    Article  Google Scholar 

  • Jakobsson M, Løvlie R, Al-Hanbali H, Arnold E, Backman J, Mörth M (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28(1):23–26

    Article  Google Scholar 

  • Latimer JC, Filippelli GM, Hendy IL, Gleason JD, Blum JD (2006) Glacial-interglacial terrigenous provenance in the southeastern Atlantic Ocean: the importance of deep-water sources and surface currents. Geology 34(7):545–548

    Article  Google Scholar 

  • Korff L, von Dobeneck T, Frederichs T, Kasten S, Kuhn G, Gersonde R, Diekmann B (2016) Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: evidence for glacial oxygen depletion and carbon trapping. Paleoceanography 31(5):600–624

  • Mangini A, Jung M, Laukenmann S (2001) What do we learn from peaks of uranium and of manganese in deep sea sediments? Mar Geol 177(1):63–78

    Article  Google Scholar 

  • Mengel M, Levermann A (2014) Ice plug prevents irreversible discharge from East Antarctica. Nature Clim Change 4(6):451–455

    Article  Google Scholar 

  • Murray RW, Miller DJ, Kryc KA (2000) Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma–atomic emission spectrometry (ICP-AES). ODP Technical Note. doi:10.2973/odp.tn.29.2000

    Google Scholar 

  • Naish T, Powell R, Levy R, Wilson G, Scherer R, Talarico F, Krissek L, Niessen F, Pompilio M, Wilson T, Carter L, DeConto R, Huybers P, McKay R, Pollard D, Ross J, Winter D, Barrett P, Browne G, Cody R, Cowan E, Crampton J, Dunbar G, Dunbar N, Florindo F, Gebhardt C, Graham I, Hannah M, Hansaraj D, Harwood D, Helling D, Henrys S, Hinnov L, Kuhn G, Kyle P, Läufer A, Maffioli P, Magens D, Mandernack K, McIntosh W, Millan C, Morin R, Ohneiser C, Paulsen T, Persico D, Raine I, Reed J, Riesselman C, Sagnotti L, Schmitt D, Sjunneskog C, Strong P, Taviani M, Vogel S, Wilch T, Williams T (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(7236):322–328

    Article  Google Scholar 

  • Nürnberg CC, Bohrmann G, Schlüter M, Frank M (1997) Barium accumulation in the Atlantic sector of the Southern Ocean: results from 190,000-year records. Paleoceanography 12:594–603

    Article  Google Scholar 

  • Orejola N, Passchier S (2014) Sedimentology of lower Pliocene to Upper Pleistocene diamictons from IODP Site U1358, Wilkes Land margin, and implications for East Antarctic Ice Sheet dynamics. Antarctic Sci 26(02):183–192. doi:10.1017/S0954102013000527

    Article  Google Scholar 

  • Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I Oceanogr Res Pap 42(5):641–673

    Article  Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55–109

    Article  Google Scholar 

  • Passchier S (2011) Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica. Paleoceanography 26, PA4204. doi:10.1029/2010PA002061

    Article  Google Scholar 

  • Pattan JN, Mir IA, Parthiban G, Karapurkar SG, Matta VM, Naidu PD, Naqvi SW (2013) Coupling between suboxic condition in sediments of the western Bay of Bengal and southwest monsoon intensification: a geochemical study. Chem Geol 343:55–66

    Article  Google Scholar 

  • Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30(8):747–750

    Article  Google Scholar 

  • Reinardy BT, Escutia C, Iwai M, Jimenez-Espejo FJ, Cook C, van de Flierdt T, Brinkhuis H (2015) Repeated advance and retreat of the East Antarctic Ice Sheet on the continental shelf during the early Pliocene warm period. Palaeogeogr Palaeoclimatol Palaeoecol 422:65–84

    Article  Google Scholar 

  • Riedinger N, Kasten S, Gröger J, Franke C, Pfeifer K (2006) Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth Planet Sci Lett 241(3):876–887

    Article  Google Scholar 

  • Schenau SJ, Prins MA, De Lange GJ, Monnin C (2001) Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments. Geochim Cosmochim Acta 65(10):1545–1556

    Article  Google Scholar 

  • Schmidtko S, Heywood KJ, Thompson AF, Aoki S (2014) Multidecadal warming of Antarctic waters. Science 346(6214):1227–1231

    Article  Google Scholar 

  • Shipboard Scientific Party (1989) Proc ODP, Init Repts. In: Barron J, Larsen B (eds) Ocean Drilling Program, College Station, TX, 1989, vol 119, p 397–458. doi:10.2973/odp.proc.ir.119.1989

  • Sniderman JK, Woodhead JD, Hellstrom J, Jordan GJ, Drysdale RN, Tyler JJ, Porch N (2016) Pliocene reversal of late Neogene aridification. Proc Natl Acad Sci 113(8):1999–2004

    Article  Google Scholar 

  • Tauxe L, Stickley CE, Sugisaki S, Bijl PK, Bohaty SM, Brinkhuis H, Escutia C, Flores JA, Houben AJP, Iwai M, Jiménez-Espejo F, McKay R, Passchier S, Pross J, Riesselman CR, Röhl U, Sangiorgi F, Welsh K, Klaus A, Fehr A, Bendle JAP, Dunbar R, Gonzàlez J, Hayden T, Katsuki K, Olney MP, Pekar SF, Shrivastava PK, van de Flierdt T, Williams T, Yamane M (2012) Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction. Paleoceanography 27, PA2214. doi:10.1029/2012PA002308

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Carlton

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1):12–32

    Article  Google Scholar 

  • Whitehead JM, Bohaty SM (2003) Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165. Paleoceanography 18(3):1075. doi:10.1029/2002PA000829

    Article  Google Scholar 

  • Whitehead JM, Wotherspoon S, Bohaty SM (2005) Minimal Antarctic sea ice during the Pliocene. Geology 33(2):137–140

    Article  Google Scholar 

  • Williams GD, Bindoff NL, Marsland SJ, Rintoul SR (2008) Formation and export of dense shelf water from the Adélie Depression, East Antarctica. J Geophys Res Oceans 113(C4), C04039. doi:10.1029/2007JC004346

    Article  Google Scholar 

  • Zhang Z, Nisancioglu KH, Ninnemann US (2013) Increased ventilation of Antarctic deep water during the warm mid-Pliocene. Nature Commun 4:1499. doi:10.1038/ncomms2521

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation (award OCE 1060080 to S.P.). Samples were provided by the Integrated Ocean Drilling Program. Insightful comments from anonymous reviewers and the journal editors helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Passchier.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, M.A., Passchier, S. Oceanic circulation changes during early Pliocene marine ice-sheet instability in Wilkes Land, East Antarctica. Geo-Mar Lett 37, 207–213 (2017). https://doi.org/10.1007/s00367-016-0489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0489-8

Keywords

Navigation