Skip to main content

Advertisement

Log in

Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Earthquakes and submarine landslides are recurrent and widespread manifestations of fault activity offshore SW Iberia. The present work tests the effects of sea-level rise on offshore fault systems using Coulomb stress change calculations across the Alentejo margin. Large-scale faults capable of generating large earthquakes and tsunamis in the region, especially NE–SW trending thrusts and WNW–ESE trending dextral strike-slip faults imaged at basement depths, are either blocked or unaffected by flexural effects related to sea-level changes. Large-magnitude earthquakes occurring along these structures may, therefore, be less frequent during periods of sea-level rise. In contrast, sea-level rise promotes shallow fault ruptures within the sedimentary sequence along the continental slope and upper rise within distances of <100 km from the coast. The results suggest that the occurrence of continental slope failures may either increase (if triggered by shallow fault ruptures) or decrease (if triggered by deep fault ruptures) as a result of sea-level rise. Moreover, observations of slope failures affecting the area of the Sines contourite drift highlight the role of sediment properties as preconditioning factors in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afilhado A, Matias L, Shiobara H, Hirn A, Mendes-Victor L, Shimamura H (2008) From unthinned continent to ocean: the deep structure of the West Iberia passive continental margin at 38 degrees N. Tectonophysics 458:9–50. doi:10.1016/j.tecto.2008.03.002

    Article  Google Scholar 

  • Baptista MA, Miranda JM, Chierici F, Zitellini N (2003) New study of the 1755 earthquake source based on multichannel seismic survey data and tsunami modeling. Nat Hazards Earth Syst Sci 3:333–340

    Article  Google Scholar 

  • Brothers DS, Luttrell KM, Chaytor JD (2013) Sea-level-induced seismicity and submarine landslide occurrence. Geology 41:979–982. doi:10.1130/G34410.1

    Article  Google Scholar 

  • Cabral J (2012) Neotectonics of mainland Portugal: state of the art and future perspectives. J Iber Geol 38:71–84. doi:10.5209/rev_JIGE.2012.v38.n1.39206

    Article  Google Scholar 

  • Clare MA, Talling PJ, Challenor P, Malgesini G, Hunt J (2014) Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence. Geology 42:263–266. doi:10.1130/G35160.1

    Article  Google Scholar 

  • Cocco R, Rice JR (2002) Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J Geophys Res 107:B22030. doi:10.1029/2000JB000138

    Article  Google Scholar 

  • Cunha TA, Watts AB, Pinheiro LM, Myklebust R (2010) Seismic and gravity anomaly evidence of large-scale compressional deformation off SW Portugal. Earth Planet Sci Lett 293:171–179. doi:10.1016/j.epsl.2010.01.047

    Article  Google Scholar 

  • Cunha TA, Matias LM, Terrinha P, Negredo AM, Rosas F, Fernandes RMS, Pinheiro LM (2012) Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data. Geophys J Int 188:850–872. doi:10.1111/j.1365-246X.2011.05328.x

    Article  Google Scholar 

  • Custódio S, Dias NA, Carrilho F, Góngora E, Rio L, Marreiros C, Morais I, Alves P, Matias L (2015) Earthquakes in western Iberia: improving the understanding of lithospheric deformation in a slowly deforming region. Geophys J Int 203:127–145

    Article  Google Scholar 

  • Dugan B, Flemings PB (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science 289:288–291. doi:10.1126/science.289.5477.288

    Article  Google Scholar 

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. doi:10.1016/j.jsg.2010.06.009

    Article  Google Scholar 

  • Goldfinger C, Nelson CH, Johnson JE, Shipboard Scientific Party (2003) Holocene earthquake records from the Cascadia subduction zone and northern San Andreas Fault based on precise dating of offshore turbidites. Annu Rev Earth Planet Sci 31:555–577

    Article  Google Scholar 

  • Gràcia E, Danobeitia J, Vergés J, Cordoba D, PARSIFAL Team (2003) Mapping active faults offshore Portugal (36°N–38°N): implications for seismic hazard assessment along the southwest Iberian margin. Geology 31:83–86

    Article  Google Scholar 

  • Gràcia E, Vizcaino A, Escutia C, Asioli A, Rodés Á, Pallàs R, Garcia-Orellana J, Lebreiro S, Goldfinger C (2010) Holocene earthquake record offshore Portugal (SW Iberia): testing turbidite paleoseismology in a slow-convergence margin. Quat Sci Rev 29:1156–1172. doi:10.1016/j.quascirev.2010.01.010

    Article  Google Scholar 

  • Hernández-Molina FJ, Sierro FJ, Llave E, Roque C, Stow DAV, Williams T, Lofi J, Van der Schee M, Arnáiz A, Ledesma S, Rosales C, Rodrígues-Tovar FJ, Pardo-Igúzquiza E, Brackenridge R (2016) Evolution of the Gulf of Cadiz margin and southwest Portugal contourite depositional system: tectonic, sedimentary and paleoceanographic implications from IODP expedition 339. Mar Geol 377:7–39. doi:10.1016/j.margeo.2015.09.013

    Article  Google Scholar 

  • Iacono CLO, Gràcia E, Zaniboni F, Pagnoni G, Tinti S, Bartolomé R, Masson DG, Wynn RB, Lourenço N, Pinto de Abreu M, Doñobeitia JJ, Zitellini N (2012) Large, deepwater slope failures : implications for landslide-generated tsunamis. Geology 40:931–934. doi:10.1130/G33446.1

    Article  Google Scholar 

  • Jiménez-Munt I, Fernàndez M, Vergés J, Afonso JC, Garcia-Castellanos D, Fullea J (2010) Lithospheric structure of the Gorringe Bank: insights into its origin and tectonic evolution. Tectonics 29:1–16. doi:10.1029/2009TC002458

    Article  Google Scholar 

  • King G, King CP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953. doi:10.1016/0148-9062(95)94484-2

    Google Scholar 

  • Laberg JS, Camerlenghi A (2008) The significance of contourites for submarine slope stability. In: Rebesco M, Camerlenghi A (eds) Contourites. developments in sedimentology, vol 60. Elsevier, Amsterdam, pp 537–556

    Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the last glacial maximum to the holocene. Proc Nat Acad Sci 111:15296–15303

    Article  Google Scholar 

  • Lebreiro SM, McCave IN, Weaver PPE (1997) Late Quaternary turbidite emplacement on the Horseshoe Abyssal Plain (Iberian Margin). J Sed Res 67:856–870

    Google Scholar 

  • Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64

    Article  Google Scholar 

  • Luttrell K, Sandwell D (2010) Ocean loading effects on stress at near shore plate boundary fault systems. J Geophys Res 115:B08411. doi:10.1029/2009JB006541

    Article  Google Scholar 

  • Maslin M, Owen M, Day S, Long D (2004) Linking continental slope failures and climate change: testing the clathrate gun hypothesis. Geology 32:53–56. doi:10.1130/G20114.1

    Article  Google Scholar 

  • Masson DG, Arzola RG, Wynn RB, Hunt JE, Weaver PPE (2011) Seismic triggering of landslides and turbidity currents offshore Portugal. Geochem Geophys Geosyst 12:Q12011. doi:10.1029/2011GC003839

    Article  Google Scholar 

  • Matias LM, Cunha T, Annunziato A, Baptista MA, Carrilho F (2013) Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Nat Hazards Earth Syst Sci 13:1–13. doi:10.5194/nhess-13-1-2013

    Article  Google Scholar 

  • Neves MC, Cabral J, Luttrell K, Figueiredo P, Rockwell T, Sandwell D (2015) The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics 658:206–220. doi:10.1016/j.tecto.2015.07.023

    Article  Google Scholar 

  • Owen M, Day S, Maslin M (2007) Late Pleistocene submarine mass movements: occurrence and causes. Quat Sci Rev 26:958–978. doi:10.1016/j.quascirev.2006.12.011

    Article  Google Scholar 

  • Peltier WR, Fairbanks RG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev 25:3322–3337

    Article  Google Scholar 

  • Pro C, Buforn E, Bezzeghoud M, Udias A (2013) Mechanism of 2003, 2007 and 2009 earthquakes (S. Vicente Cape) and implications for the 1755 Lisbon earthquake.Tectonophysics 583:16–27

  • Roque C, Hernández-Molina FJ, Ercilla G, Casas D, Quartau R, Llave E, Alonso B, Ferran M, Mena A, Francés G, MOWER cruise party (2015) Slope failure and mass movements in the Sines Contourite Drift (West Portuguese Margin): preliminary results. In: Proc VII Symp MIA15, 21–23 September 2015, Malaga, Spain, pp 579–581

  • Rosas FM, Duarte JC, Neves MC, Terrinha P, Silva S, Matias L, Gràcia E, Bartolomé R (2012) Tectonophysics thrust–wrench interference between major active faults in the Gulf of Cadiz (Africa–Eurasia plate boundary, offshore SW Iberia): tectonic implications from coupled analog and numerical modeling. Tectonophysics 548–548:1–21. doi:10.1016/j.tecto.2012.04.013

    Article  Google Scholar 

  • Scholz NA, Riedel M, Urlaub M, Spence GD, Hyndman RD (2016) Submarine landslides offshore Vancouver Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure. Geo-Mar Lett. doi:10.1007/s00367-016-0452-8

    Google Scholar 

  • Smith B, Sandwell D (2003) Coulomb stress accumulation along the San Andreas Fault system. J Geophys Res 108:2296. doi:10.1029/2002JB002136

    Google Scholar 

  • Talling PJ (2014) On the triggers, resulting flow types and frequency of subaqueous sediment density flows in different settings. Mar Geol 352:155–182

    Article  Google Scholar 

  • Terrinha P, Pinheiro LM, Henriet J-P, Matias L, Ivanov MK, Monteiro JH, Akhmetzhanov A, Volkonskaya A, Cunha T, Shaskin P, Rovere M, TTR10 Shipboard Scientific Party (2003) Tsunamigenic-seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Mar Geol 195:55–73

    Article  Google Scholar 

  • Terrinha P, Matias L, Vicente J, Duarte D, Luís J, Pinheiro L, Lourenço N, Diez S, Rosas F, Magalhães V, Valadares V, Zitellini N, Roque C, Mendes-Víctor L (2009) Morphotectonics and strain partitioning at the Iberia – Africa plate boundary from multibeam and seismic reflection data. Mar Geol 267:156–174. doi:10.1016/j.margeo.2009.09.012

    Article  Google Scholar 

  • Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res 118:2600–2618. doi:10.1002/2013JF002720

    Article  Google Scholar 

  • Urlaub M, Talling PJ, Masson DG (2013) Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quat Sci Rev 72:63–82. doi:10.1016/j.quascirev.2013.04.020

    Article  Google Scholar 

  • Urlaub M, Talling P, Zervos A (2014a) A numerical investigation of sediment destructuring as a potential globally widespread trigger for large submarine landslides on low gradients. submarine mass movements and their consequences. Springer, Heidelberg, pp 177–188

    Google Scholar 

  • Urlaub M, Talling PJ, Clare M (2014b) Sea-level-induced seismicity and submarine landslide occurrence: comment. Geology 42:2014–2015. doi:10.1130/G35254C.1

    Article  Google Scholar 

  • Vizcaino A, Gràcia E, Pallàs R, Garcia-Orellana J, Escutia C, Casas D, Willmott V, Diez S, Asioli A, Dañobeitia J (2006) Sedimentology, physical properties and age of mass transport deposits associated with the Marquês de Pombal Fault, Southwest Portuguese Margin. Norw J Geol 86:177–186

    Google Scholar 

  • Watts AB, Rodger M, Peirce C, Greenroyd CJ, Hobbs RW (2009) Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil. Geophys Res 114:B07103. doi:10.1029/2008JB006259

    Article  Google Scholar 

  • Zitellini N, Gràcia E, Matias L, Terrinha P, Abreu MA, DeAlteriis G, Henriet JP, Dañobeitia JJ, Masson DG, Mulder T, Ramella R, Somoza L, Diez S (2009) The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar. Earth Planet Sci Lett 280:13–50. doi:10.1016/j.epsl.2008.12.005

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Portuguese Foundation for Science and Technology (FCT) through projects CONDRIBER (FCT-PTDC/GEO-GEO/4430/2012) and IDL-FCT-UID/GEO/50019/2013. We thank the crew of R/V Sarmiento de Gamboa and the UTM-CSIC team for their help and assistance during the MOWER cruise. We highly appreciate the constructive comments of an anonymous reviewer and the journal editors, which greatly helped improving an initial version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Neves.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, M.C., Roque, C., Luttrell, K.M. et al. Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia). Geo-Mar Lett 36, 415–424 (2016). https://doi.org/10.1007/s00367-016-0459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0459-1

Keywords

Navigation