Skip to main content
Log in

qRLS: quantum relaxation for linear systems in finite element analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Quantum linear system algorithms (QLSAs) for gate-based quantum computing can provide exponential speedups for solving linear systems but face challenges when applied to finite element problems due to the growth of the condition number with problem size. Furthermore, QLSAs cannot use an approximate solution or initial guess to output an improved solution. Here, we present quantum relaxation for linear system (qRLS), as an iterative approach for gate-based quantum computers by embedding linear stationary iterations into a larger block linear system. The condition number of the block linear system scales linearly with the number of iterations independent of the size and condition number of the original system. The well-conditioned system enables a practical iterative solution of finite element problems using the state-of-the-art quantum signal processing (QSP) variant of QLSAs, for which we provide numerical results using a quantum computer simulator. The iteration complexity demonstrates favorable scaling relative to classical architectures, as the solution time is independent of system size and requires O(log(N)) qubits. This represents an exponential efficiency gain, offering a new approach for iterative finite element problem-solving on quantum hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

We do not have a data availability statement.

References

  1. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):1–15. https://doi.org/10.1103/PhysRevLett.103.150502

    Article  MathSciNet  Google Scholar 

  2. Martyn JM, Rossi ZM, Tan AK, Chuang IL (2021) Grand unification of quantum algorithms. PRX Quantum 2(4):1. https://doi.org/10.1103/PRXQuantum.2.040203

    Article  Google Scholar 

  3. Montanaro A, Pallister S (2016) Quantum algorithms and the finite element method. Phys Rev A 93(3):1–16. https://doi.org/10.1103/PhysRevA.93.032324

    Article  Google Scholar 

  4. Feynman RP (1986) Quantum mechanical computers. Found Phys 16(6):507–531. https://doi.org/10.1007/BF01886518

    Article  MathSciNet  Google Scholar 

  5. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science, 1994, pp 124–134. https://doi.org/10.1109/SFCS.1994.365700.

  6. Berry DW (2014) High-order quantum algorithm for solving linear differential equations. J Phys A Math Theor 47(10):1–14. https://doi.org/10.1088/1751-8113/47/10/105301

    Article  MathSciNet  Google Scholar 

  7. Childs AM, Liu J-P, Ostrander A (2020) High-precision quantum algorithms for partial differential equations. 1–38 [Online]. Available: http://arxiv.org/abs/2002.07868

  8. Nielsen MA, Chuang IL (2011) Quantum computation and quantum information: 10th anniversary edition. https://doi.org/10.1017/CBO9780511976667

  9. Finnila AB, Gomez MA, Sebenik C, Stenson C, Doll JD (1994) Quantum annealing: a new method for minimizing multidimensional functions. Chem Phys Lett 219(5–6):343–348. https://doi.org/10.1016/0009-2614(94)00117-0

    Article  Google Scholar 

  10. Born M, Fock V (1928) Beweis des Adiabatensatzes. Zeitschrift für Phys 51(3):165–180. https://doi.org/10.1007/BF01343193

    Article  Google Scholar 

  11. Acharya R et al (2023) Suppressing quantum errors by scaling a surface code logical qubit. Nature 614(7949):676–681. https://doi.org/10.1038/s41586-022-05434-1

    Article  Google Scholar 

  12. King J, Yarkoni S, Nevisi MM, Hilton JP, Mcgeoch CC (2015) Benchmarking a quantum annealing processor with the time-to-target metric. https://doi.org/10.48550/arXiv.1508.05087

  13. Raisuddin OM, De S (2022) FEqa: finite element computations on quantum annealers. Comput Methods Appl Mech Eng 395:115014. https://doi.org/10.1016/j.cma.2022.115014

    Article  MathSciNet  Google Scholar 

  14. Childs AM, Kothari R, Somma RD (2017) Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J Comput. https://doi.org/10.1137/16M1087072

    Article  MathSciNet  Google Scholar 

  15. Clader BD, Jacobs BC, Sprouse CR (2013) Preconditioned quantum linear system algorithm. Phys Rev Lett 110(25):1–5. https://doi.org/10.1103/PhysRevLett.110.250504

    Article  Google Scholar 

  16. Wang G (2017) Efficient quantum algorithms for analyzing large sparse electrical networks. Quantum Inf Comput 17(11–12):987–1026. https://doi.org/10.26421/qic17.11-12-5

    Article  MathSciNet  Google Scholar 

  17. Dong Y, Meng X, Whaley KB, Lin L (2021) Efficient phase-factor evaluation in quantum signal processing. Phys Rev A 103(4):42419. https://doi.org/10.1103/PhysRevA.103.042419

    Article  MathSciNet  Google Scholar 

  18. Orsucci D, Dunjko V (2021) On solving classes of positive-definite quantum linear systems with quadratically improved runtime in the condition number. Quantum 5:1–49. https://doi.org/10.22331/Q-2021-11-08-573

    Article  Google Scholar 

  19. Leyton SK, Osborne TJ (2008) A quantum algorithm to solve nonlinear differential equations. 1–11 [Online]. Available: http://arxiv.org/abs/0812.4423

  20. Berry DW (2014) High-order quantum algorithm for solving linear differential equations. J Phys A Math Theor. https://doi.org/10.1088/1751-8113/47/10/105301

    Article  Google Scholar 

  21. Lloyd S et al (2020) Quantum algorithm for nonlinear differential equations. 1–17 [Online]. Available: http://arxiv.org/abs/2011.06571

  22. Liu JP, Kolden HØ, Krovi HK, Loureiro NF, Trivisa K, Childs AM (2021) Efficient quantum algorithm for dissipative nonlinear differential equations. Proc Natl Acad Sci USA 118(35):1–6. https://doi.org/10.1073/pnas.2026805118

    Article  MathSciNet  Google Scholar 

  23. Kyriienko O, Paine AE, Elfving VE (2021) Solving nonlinear differential equations with differentiable quantum circuits. Phys Rev A 103(5):1–22. https://doi.org/10.1103/PhysRevA.103.052416

    Article  MathSciNet  Google Scholar 

  24. An D, Fang D, Lin L (2022) Time-dependent Hamiltonian simulation of highly oscillatory dynamics and superconvergence for Schrödinger equation. Quantum 6:1–41. https://doi.org/10.22331/Q-2022-04-15-690

    Article  Google Scholar 

  25. Childs AM, Liu JP, Ostrander A (2020) High-precision quantum algorithms for partial differential equations. Quantum 5:1–40. https://doi.org/10.22331/Q-2021-11-10-574

    Article  Google Scholar 

  26. Arrazola JM, Kalajdzievski T, Weedbrook C, Lloyd S (2019) Quantum algorithm for nonhomogeneous linear partial differential equations. Phys Rev A 100(3):32306. https://doi.org/10.1103/PhysRevA.100.032306

    Article  MathSciNet  Google Scholar 

  27. Trefethen LN, Bau D (1997) Numerical linear algebra. https://doi.org/10.1137/1.9780898719574

  28. Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, Second Edition. https://doi.org/10.1137/1.9780898719505

  29. Axelsson O (1994) Iterative solution methods. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511624100

    Book  Google Scholar 

  30. Berry DW, Childs AM, Ostrander A, Wang G (2017) Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun Math Phys 356(3):1057–1081. https://doi.org/10.1007/s00220-017-3002-y

    Article  MathSciNet  Google Scholar 

  31. Carrera Vázquez A, Wörner S, Hiptmair R (2018) Quantum algorithm for solving tri-diagonal linear systems of equations. 1–24

  32. Cappanera E (2021) Variational quantum linear solver for finite element problems: a Poisson equation test case. TU Delft, Delft

    Google Scholar 

  33. Qiskit Contributors (2023) Qiskit: an open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2573505

  34. Fang D, Lin L, Tong Y (2023) Time-marching based quantum solvers for time-dependent linear differential equations. Quantum 7:1–45. https://doi.org/10.22331/Q-2023-03-20-955

    Article  Google Scholar 

  35. Costa PCS, An D, Sanders YR, Su Y, Babbush R, Berry DW (2022) Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum 3(4):1. https://doi.org/10.1103/PRXQuantum.3.040303

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of this work by NIBIB R01EB0005807, R01EB25241, R01EB033674 and R01EB032820 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Muhammad Raisuddin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raisuddin, O., De, S. qRLS: quantum relaxation for linear systems in finite element analysis. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01975-3

Keywords

Navigation