Skip to main content
Log in

Medial hex-meshing: high-quality all-hexahedral mesh generation based on medial mesh

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Automatic high-quality all-hexahedral mesh generation is still a challenging problem in engineering applications. In this paper, based on the manifold curve/surface-mixed medial axis representation, we propose a new high-quality all-hex mesh generation method. Given an input watertight model, we first compute the corresponding medial mesh via the medial axis transform simplification method. Then, we build the all-hexahedral layer on the surface skeleton of the medial mesh via cross-field-guided quad-meshing and extrusion, and construct the hex-mesh elements for the curve skeleton of the medial mesh via sweeping approach. Based on the topological and geometrical information of the medial mesh, the initial hexahedral mesh can be obtained. Furthermore, with the iterative volumetric subdivision fitting approach, the hexahedral mesh is fitted to the input model. Finally, padding refinement and mesh optimization method are used to improve the element quality. In order to enhance the robustness and applicability of the proposed method, an interactive framework is also presented to handle non-manifold medial mesh. To show the efficiency of the proposed method, we have extensively tested our method on a lot of models. Compared with existing hexahedral mesh generation methods, our method can generate all-hex meshes with simpler singular structure, better element quality, and smaller element numbers. The code and data will be made available online to foster future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Shepherd JF, Johnson CR (2008) Hexahedral mesh generation constraints. Eng Comput 24(3):195–213

    Article  Google Scholar 

  2. Zhang Y, Hughes TJ, Bajaj CL (2010) An automatic 3d mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5–8):405–415

    Article  Google Scholar 

  3. Zhang Y, Wang W, Hughes TJ (2012) Solid t-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249:185–197

    Article  MathSciNet  Google Scholar 

  4. Wang W, Zhang Y, Liu L, Hughes TJ (2013) Trivariate solid t-spline construction from boundary triangulations with arbitrary genus topology. Comput Aided Des 45(2):351–360

    Article  MathSciNet  Google Scholar 

  5. Zhang Y, Wang W, Hughes TJ (2013) Conformal solid t-spline construction from boundary t-spline representations. Comput Mech 51:1051–1059

    Article  MathSciNet  Google Scholar 

  6. Lai Y, Zhang YJ, Liu L, Wei X, Fang E, Lua J (2017) Integrating cad with abaqus: a practical isogeometric analysis software platform for industrial applications. Comput Math Appl 74(7):1648–1660

    Article  MathSciNet  Google Scholar 

  7. Li TS, McKeag RM, Armstrong CG (1995) Hexahedral meshing using midpoint subdivision and integer programming. Comput Methods Appl Mech Eng 124(1):171–193. https://doi.org/10.1016/0045-7825(94)00758-F

    Article  Google Scholar 

  8. Zhang Y, Bajaj C, Sohn B-S (2005) 3d finite element meshing from imaging data. Comput Methods Appl Mech Eng 194(48–49):5083–5106

    Article  Google Scholar 

  9. Zhang Y, Bajaj C (2006) Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput Methods Appl Mech Eng 195(9–12):942–960

    Article  Google Scholar 

  10. Maréchal L (2009) Advances in octree-based all-hexahedral mesh generation: handling sharp features. In: Clark BW (ed) Proceedings of the 18th international meshing roundtable. Springer, Berlin, pp 65–84

  11. Qian J, Zhang Y (2012) Automatic unstructured all-hexahedral mesh generation from b-reps for non-manifold cad assemblies. Eng Comput 28:345–359

    Article  Google Scholar 

  12. Zhang Y, Liang X, Xu G (2013) A robust 2-refinement algorithm in octree or rhombic dodecahedral tree based all-hexahedral mesh generation. Comput Methods Appl Mech Eng 256:88–100

    Article  MathSciNet  Google Scholar 

  13. Zhang Y (2013) In: Zhang YJ (ed) Challenges and advances in image-based geometric modeling and Mesh generation. Springer, Dordrecht, pp 1–10. https://doi.org/10.1007/978-94-007-4255-0_1

  14. Lin H, Jin S, Liao H, Jian Q (2015) Quality guaranteed all-hex mesh generation by a constrained volume iterative fitting algorithm. Comput Aided Des 67:107–117

    Article  Google Scholar 

  15. Zhang YJ (2016) Geometric modeling and mesh generation from scanned images. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Gao X, Shen H, Panozzo D (2019) Feature preserving octree-based hexahedral meshing. Computer graphics forum, vol 38. Wiley Online Library, pp 135–149

  17. Pitzalis L, Livesu M, Cherchi G, Gobbetti E, Scateni R (2021) Generalized adaptive refinement for grid-based hexahedral meshing. ACM Trans Graph (TOG) 40(6):1–13

    Article  Google Scholar 

  18. Livesu M, Pitzalis L, Cherchi G (2021) Optimal dual schemes for adaptive grid based hexmeshing. ACM Trans Graph (TOG) 41(2):1–14

    Article  Google Scholar 

  19. Shih BY, Sakurai H (1996) Automated hexahedral mesh generation by swept volume decomposition and recomposition. In: Proceeding of the 5th International Meshing Roundtable, pp 273–280

  20. Wu H, Gao S (2014) Automatic swept volume decomposition based on sweep directions extraction for hexahedral meshing. Procedia Eng 82:136–148

    Article  Google Scholar 

  21. Gregson J, Sheffer A, Zhang E (2011) All-hex mesh generation via volumetric polycube deformation. Computer graphics forum, vol 30. Wiley Online Library, pp 1407–1416

  22. Livesu M, Vining N, Sheffer A, Gregson J, Scateni R (2013) Polycut: monotone graph-cuts for polycube base-complex construction. ACM Trans Graph (TOG) 32(6):1–12

    Article  Google Scholar 

  23. Huang J, Jiang T, Shi Z, Tong Y, Bao H, Desbrun M (2014) l1-based construction of polycube maps from complex shapes. ACM Trans Graph (TOG) 33(3):1–11

    Google Scholar 

  24. Fu X-M, Bai C-Y, Liu Y (2016) Efficient volumetric polycube-map construction. Computer graphics forum, vol 35. Wiley Online Library, pp 97–106

  25. Hu K, Zhang YJ (2016) Centroidal voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation. Comput Methods Appl Mech Eng 305:405–421

    Article  MathSciNet  Google Scholar 

  26. Hu K, Zhang YJ, Liao T (2017) Surface segmentation for polycube construction based on generalized centroidal voronoi tessellation. Comput Methods Appl Mech Eng 316:280–296

    Article  MathSciNet  Google Scholar 

  27. Li L, Zhang P, Smirnov D, Abulnaga SM, Solomon J (2021) Interactive all-hex meshing via cuboid decomposition. ACM Trans Graph (TOG) 40(6):1–17

    Google Scholar 

  28. Yu Y, Liu JG, Zhang YJ (2022) HexDom: polycube-based hexahedral dominant mesh generation. The edited volume of mesh generation and adaptation: cutting-edge techniques, SEMA-SIMAI Springer Series

  29. Yu Y, Wei X, Li A, Liu JG, He J, Zhang YJ (2022) HexGen and Hex2Spline: Polycube-Based Hexahedral Mesh Generation and Spline Modeling for Isogeometric Analysis Applications in LS-DYNA. Springer INdAM Serie: proceedings of INdAM Workshop “Geometric Challenges in Isogeometric Analysis”

  30. Pietroni N, Campen M, Sheffer A, Cherchi G, Bommes D, Gao X, Scateni R, Ledoux F, Remacle J, Livesu M (2022) Hex-mesh generation and processing: a survey. ACM Trans Graph 42(2):1–44

    Article  Google Scholar 

  31. Guo H-X, Liu X, Yan D-M, Liu Y (2020) Cut-enhanced polycube-maps for feature-aware all-hex meshing. ACM Trans Graph (TOG) 39(4):106–1

    Article  Google Scholar 

  32. Liu L, Zhang Y, Liu Y, Wang W (2015) Feature-preserving t-mesh construction using skeleton-based polycubes. Comput Aided Des 58:162–172

    Article  Google Scholar 

  33. Huang J, Tong Y, Wei H, Bao H (2011) Boundary aligned smooth 3d cross-frame field. ACM Trans Graph (TOG) 30(6):1–8

    Google Scholar 

  34. Li Y, Liu Y, Xu W, Wang W, Guo B (2012) All-hex meshing using singularity-restricted field. ACM Trans Graph (TOG) 31(6):1–11

    Article  Google Scholar 

  35. Jiang T, Huang J, Wang Y, Tong Y, Bao H (2013) Frame field singularity correction for automatic hexahedralization. IEEE Trans Vis Comput Graph 20(8):1189–1199

    Article  Google Scholar 

  36. Liu H, Zhang P, Chien E, Solomon J, Bommes D (2018) Singularity-constrained octahedral fields for hexahedral meshing. ACM Trans Graph 37(4):93–1

    Article  Google Scholar 

  37. Sheffer A, Etzion M, Rappoport A, Bercovier M (1999) Hexahedral mesh generation using the embedded voronoi graph. Eng Comput 15(3):248–262

    Article  Google Scholar 

  38. Livesu M, Muntoni A, Puppo E, Scateni R (2016) Skeleton-driven adaptive hexahedral meshing of tubular shapes. In: Computer graphics forum, vol 35. Wiley Online Library, pp 237–246

  39. Lin H, Liao H, Deng C (2012) Filling triangular mesh model with all-hex mesh by volume subdivision fitting. State Key Lab of CAD & CG, Zhejiang University Report No: TR ZJUCAD 2, 2012

  40. Blacker T (2000) Meeting the challenge for automated conformal hexahedral meshing. In: 9th international meshing roundtable. Citeseer, pp 11–20

  41. Sun F, Choi Y-K, Yu Y, Wang W (2013) Medial meshes for volume approximation. arXiv:1308.3917

  42. Sun F, Choi Y-K, Yu Y, Wang W (2015) Medial meshes-a compact and accurate representation of medial axis transform. IEEE Trans Vis Comput Graph 22(3):1278–1290

    Article  Google Scholar 

  43. Usai F, Livesu M, Puppo E, Tarini M, Scateni R (2015) Extraction of the quad layout of a triangle mesh guided by its curve skeleton. ACM Trans Graph (TOG) 35(1):1–13

    Article  Google Scholar 

  44. Blum H (1967) A transformation for extracting new descriptors of shape. In: Wathen-Dunn W (ed) Proc. models for the perception of speech and visual form. MIT Press, Cambridge, MA, pp 362–380. http://pageperso.lif.univ-mrs.fr/~edouard.thiel/rech/1967-blum.pdf

  45. Lin C, Liu L, Li C, Kobbelt L, Wang B, Xin S, Wang W (2020) Seg-mat: 3d shape segmentation using medial axis transform. IEEE Trans Vis Comput Graph 28(6):2430–2444

  46. Yang Y, Ren Z, Li H, Zhou C, Wang X, Hua G (2021) Learning dynamics via graph neural networks for human pose estimation and tracking. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8074–8084

  47. Lan L, Yang Y, Kaufman D, Yao J, Li M, Jiang C (2021) Medial ipc: accelerated incremental potential contact with medial elastics. ACM Trans Graph 40(4):1–16

  48. Tagliasacchi A, Alhashim I, Olson M, Zhang H (2012) Mean curvature skeletons. Computer Graphics Forum. Oxford, UK: Blackwell Publishing Ltd, 31(5):1735–1744

  49. Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, Chen B (2013) L1-medial skeleton of point cloud. ACM Trans Graph 32(4):65–1

    Article  Google Scholar 

  50. Xu Z, Zhou Y, Kalogerakis E, Singh K (2019) Predicting animation skeletons for 3d articulated models via volumetric nets. In: 2019 international conference on 3D vision (3DV). IEEE, pp 298–307

  51. Cheng J, Zheng X, Chen S, Liu G, Xin S, Lu L, Zhou Y, Tu C (2020) Skeletonization via dual of shape segmentation. Comput Aided Geom Des 80:101856

    Article  MathSciNet  Google Scholar 

  52. Amenta N, Choi S, Kolluri RK (2001) The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, pp 249–266

  53. Sud A, Foskey M, Manocha D (2005) Homotopy-preserving medial axis simplification. In: Proceedings of the 2005 ACM symposium on solid and physical modeling, pp 39–50

  54. Chazal F, Lieutier A (2005) The “\(\lambda\)-medial axis’’. Graph Models 67(4):304–331

    Article  Google Scholar 

  55. Miklos B, Giesen J, Pauly M (2010) Discrete scale axis representations for 3d geometry. In: ACM SIGGRAPH 2010 papers, pp 1–10

  56. Li P, Wang B, Sun F, Guo X, Zhang C, Wang W (2015) Q-mat: computing medial axis transform by quadratic error minimization. ACM Trans Graph (TOG) 35(1):1–16

    Google Scholar 

  57. Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, pp 209–216

  58. Pan Y, Wang B, Guo X, Zeng H, Ma Y, Wang W (2019) Q-mat+: an error-controllable and feature-sensitive simplification algorithm for medial axis transform. Comput Aided Geom Des 71:16–29

    Article  MathSciNet  Google Scholar 

  59. Dou Z, Lin C, Xu R, Yang L, Xin S, Komura T, Wang W (2022) Coverage axis: inner point selection for 3d shape skeletonization. Computer Graphics Forum 41(2):419–432.

  60. Nieser M, Reitebuch U, Polthier K (2011) Cubecover–parameterization of 3d volumes. Computer graphics forum, vol 30. Wiley Online Library, pp 1397–1406

  61. Livesu M, Pietroni N, Puppo E, Sheffer A, Cignoni P (2020) Loopycuts: practical feature-preserving block decomposition for strongly hex-dominant meshing. ACM Trans Graph (TOG) 39(4):121–1

    Article  Google Scholar 

  62. Jiang T, Huang J, Wang Y, Tong Y, Bao H (2014) Frame field singularity correction for automatic hexahedralization. IEEE Trans Vis Comput Graph 20(8):1189–1199

    Article  Google Scholar 

  63. Ray N, Sokolov D, Lévy B (2016) Practical 3d frame field generation. ACM Trans Graph (TOG) 35(6):1–9

    Article  Google Scholar 

  64. Price MA, Armstrong CG, Sabin M (1995) Hexahedral mesh generation by medial surface subdivision: Part i. Solids with convex edges. Int J Numer Methods Eng 38(19):3335–3359

    Article  Google Scholar 

  65. Price MA, Armstrong CG (1997) Hexahedral mesh generation by medial surface subdivision: Part ii. Solids with flat and concave edges. Int J Numer Methods Eng 40(1):111–136

    Article  Google Scholar 

  66. Quadros WR (2016) Laytracks3d: a new approach for meshing general solids using medial axis transform. Comput Aided Des 72:102–117

    Article  Google Scholar 

  67. Taghavi R (2020) Automatic 2D abstraction and hexahedral meshing by sorting a Delaunay mesh

  68. Papadimitrakis D, Armstrong CG, Robinson TT, Le Moigne A, Shahpar S (2020) Building direction fields on the medial object to generate 3d domain decompositions for hexahedral meshing. In Proceedings of 28th International Meshing Roundtable. https://doi.org/10.5281/zenodo.3653428.2

  69. Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJ (2007) Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29–30):2943–2959

    Article  MathSciNet  Google Scholar 

  70. Viville P, Kraemer P, Bechmann D (2021) Hexahedral mesh generation for tubular shapes using skeletons and connection surfaces. In: 16th international joint conference on computer vision, imaging and computer graphics theory and applications, En ligne, France. https://doi.org/10.5220/0010222000450054 . https://hal.science/hal-03268100

  71. Livesu M, Sheffer A, Vining N, Tarini M (2015) Practical hex-mesh optimization via edge-cone rectification. ACM Trans Graph. https://doi.org/10.1145/2766905

    Article  Google Scholar 

  72. Pietroni N, Nuvoli S, Alderighi T, Cignoni P, Tarini M et al (2021) Reliable feature-line driven quad-remeshing. ACM Trans Graph 40(4):1–17

    Article  Google Scholar 

  73. Catmull E, Clark J (1978) Recursively generated b-spline surfaces on arbitrary topological meshes. Comput Aided Des 10(6):350–355. https://doi.org/10.1016/0010-4485(78)90110-0

    Article  Google Scholar 

  74. Zhang Y, Bajaj C, Xu G (2009) Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Commun Numer Methods Eng 25(1):1–18

    Article  MathSciNet  Google Scholar 

  75. Qian J, Zhang Y, Wang W, Lewis AC, Qidwai MS, Geltmacher AB (2010) Quality improvement of non-manifold hexahedral meshes for critical feature determination of microstructure materials. Int J Numer Methods Eng 82(11):1406–1423

    Article  MathSciNet  Google Scholar 

  76. Hu K, Zhang YJ, Xu G (2018) Cvt-based 3d image segmentation and quality improvement of tetrahedral/hexahedral meshes using anisotropic giaquinta-hildebrandt operator. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):331–342

    Article  Google Scholar 

  77. Cherchi G, Alliez P, Scateni R, Lyon M, Bommes D (2019) Selective padding for polycube-based hexahedral meshing. In: Computer graphics forum, vol 38. Wiley Online Library, pp 580–591

  78. Bracci M, Tarini M, Pietroni N, Livesu M, Cignoni P (2019) Hexalab.net: an online viewer for hexahedral meshes. Comput Aided Des 110:24–36. https://doi.org/10.1016/j.cad.2018.12.003

    Article  Google Scholar 

  79. Sharp N et al (2019) Polyscope. www.polyscope.run

  80. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  Google Scholar 

  81. Zoccheddu F, Gobbetti E, Livesu M, Pietroni N, Cherchi G (2023) Hexbox: interactive box modeling of hexahedral meshes. Comput Graph Forum 42(5): e14899

  82. Reberol M, Verhetsel K, Henrotte F, Bommes D, Remacle J-F (2023) Robust topological construction of all-hexahedral boundary layer meshes. ACM Trans Math Softw 49(1):1–32

    Article  MathSciNet  Google Scholar 

  83. Beaufort P-A, Reberol M, Kalmykov D, Liu H, Ledoux F, Bommes D (2022) Hex me if you can. Computer graphics forum, vol 41. Wiley Online Library, pp 125–134

  84. Wang N, Wang B, Wang W, Guo X (2022) Computing medial axis transform with feature preservation via restricted power diagram. ACM Trans Graph (TOG) 41(6):1–18

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for a very careful reading and very detailed and valuable comments/suggestions. The hex-meshes of [38] used for comparison are provided from Dr. Ran Ling.

Funding

This research was supported by the National Key R &D Program of China under Grant No. 2020YFB1709402, the Zhejiang Provincial Science and Technology Program in China under Grant 2021C01108, the National Natural Science Foundation of China (Nos. U22A2033, 62202130, U1909210), the Graduate Scientific Research Foundation of Hangzhou Dianzi University, the Zhejiang Provincial Science and Technology Program in China (No. LQ22F020026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Xu or Haiyan Wu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xu, G., Wu, H. et al. Medial hex-meshing: high-quality all-hexahedral mesh generation based on medial mesh. Engineering with Computers (2024). https://doi.org/10.1007/s00366-023-01925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01925-5

Keywords

Navigation