Skip to main content

Advertisement

Log in

Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: operational parameters

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Plasma actuator is a flow control device which may be used to improve the performance of wind turbine blades at low airspeeds. One of the most robust numerical models to simulate the interaction of the plasma actuator with the fluid flow is the electrostatic model. This model is improved by the authors. Due to the high cost of performing experimental optimization, the optimization of plasma actuators may be investigated by this numerical model. To optimize the aerodynamic performance of a Delft University (DU) wind turbine airfoil in a full stall condition, we used the operational parameters (voltage, frequency and the waveform) applied to the plasma actuator as the main design variables. We found that increase of the applied frequency up to a certain limit improved the aerodynamic performance of the wind turbine airfoil, and higher frequencies had no significant effect. By increasing the voltage, a continuous improvement in the aerodynamic performance was observed, and up to 130% improvement in the lift coefficient was experienced. For the applied voltage, three different waveforms were considered, and it was shown that the rectangular waveform generates a higher lift coefficient with respect to the sinusoidal and triangular waveforms. Results showed that the improved electrostatic model can be used as an effective engineering tool to model effects of different operational parameters and to find an optimum operating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(E\) :

Electric field, N/C

\(f\) :

Frequency, \(\mathrm{Hz}\)

\({f}_{\mathrm{b}}\) :

Body force vector, N/m3

\({l}_{\mathrm{e}}\) :

Length of electrode, \(\mathrm{m}\)

\({l}_{\mathrm{p}}\) :

Plasma extent, m

\({n}_{\mathrm{i}}\) :

Unit normal vector

\(P\) :

Pressure, Pa

\(T\) :

Temperature, K

\({t}_{\mathrm{d}}\) :

Dielectric thickness, m

\({t}_{\mathrm{e}}\) :

Electrode thickness, m

\({u}_{j}\) :

Velocity component, m/s

\({V}_{\mathrm{app}}\) :

Applied voltage, V

\({V}_{\mathrm{bd}}\) :

Breakdown voltage, V

\(x,y\) :

Coordinates

\({\varepsilon }_{\mathrm{r}}\) :

Relative permittivity

\({\lambda }_{\mathrm{d}}\) :

Debye length, \(\mathrm{m}\)

\(\vartheta\) :

Fluid viscosity,\({\mathrm{m}}^{2}/\mathrm{s}\)

\(\rho\) :

Density, \(\mathrm{kg}/{\mathrm{m}}^{3}\)

\({\rho }_{\mathrm{c}}\) :

Net charge density, \(\mathrm{C}/{\mathrm{m}}^{3}\)

\(\phi\) :

Electric potential of external field, V

References

  1. Ross CM, Echols RH, Watson BW (2006) Fluid flow control device and method for use of same. US Patent 7,055,598, issued June 6, 2006

  2. Petković D, Ćojbašič Ž, Nikolić V (2013) Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renew Sustain Energy Rev 28:191–195

    Google Scholar 

  3. Petkovic D, Ab Hamid SH, Cojbasic Z, Pavlovic NT (2020) Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect (retraction of Vol 74, Pg 463, 2014), pp 3863–3863

  4. Shamshirband S, Petković D, Amini A, Anuar NB, Nikolić V, Ćojbašić Ž, Kiah MLM, Gani A (2014) Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission. Energy 67:623–630

    Google Scholar 

  5. Mahdavi H, Daliri A, Sohbatzadeh F, Shirzadi M, Rezanejad M (2020) A single unsteady DBD plasma actuator excited by applying two high voltages simultaneously for flow control. Phys Plasmas 27(8):083514

    Google Scholar 

  6. Kainkwa RRM (2002) The status of wind energy development in Tanzania. Phys Scr 2002(T97):107

    Google Scholar 

  7. Petković D, Nikolić V, Mitić VV, Kocić L (2017) Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms. Flow Meas Instrum 54:172–176

    Google Scholar 

  8. Petković D, Ćojbašić Ž, Nikolić V, Shamshirband S, Kiah MLM, Anuar NB, Wahab AWA (2014) Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 64:868–874

    Google Scholar 

  9. Petković D, Pavlović NT, Ćojbašić Ž (2016) Wind farm efficiency by adaptive neuro-fuzzy strategy. Int J Electr Power Energy Syst 81:215–221

    Google Scholar 

  10. Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges. Principle and applications. Journal de physique 7(C4):47–66

    Google Scholar 

  11. Roth JR (1998) Electrohydrodynamically induced airflow in a one atmosphere uniform glow discharge surface plasma. In: Plasma science, 25th anniversary IEEE conference record-abstracts

  12. Porté-Agel F, Bastankhah M, Shamsoddin S (2020) Wind-turbine and wind-farm flows: a review. Bound Layer Meteorol 174(1):1–59

    Google Scholar 

  13. Nelson RC, Corke TC, Othman H, Patel MP, Vasudevan S, Ng T (2008) A smart wind turbine blade using distributed plasma actuators for improved performance. In: 46th aerospace sciences meeting

  14. Nikolić V, Petković D, Lazov L, Milovančević M (2016) Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique. Infrared Phys Technol 77:45–50

    Google Scholar 

  15. Petković D, Jovic S, Anicic O, Nedic B, Pejovic B (2016) Analyzing of flexible gripper by computational intelligence approach. Mechatronics 40:1–16

    Google Scholar 

  16. Nikolić V, Mitić VV, Kocić L, Petković D (2017) Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique. Knowl Inf Syst 52(1):255–265

    Google Scholar 

  17. Petković D (2017) Prediction of laser welding quality by computational intelligence approaches. Optik 140:597–600

    Google Scholar 

  18. Petkovic D, Petković B, Kuzman B (2020) Appraisal of information system for evaluation of kinetic parameters of biomass oxidation. Biomass Convers Biorefin 10(3):1–9

  19. Kuzman B, Petković B, Denić N, Petković D, Ćirković B, Stojanović J, Milić M (2021) Estimation of optimal fertilizers for optimal crop yield by adaptive neuro fuzzy logic. Rhizosphere 18:100358

    Google Scholar 

  20. Milić M, Petković B, Selmi A, Petković D, Jermsittiparsert K, Radivojević A, Milovancevic M et al (2021) Computational evaluation of microalgae biomass conversion to biodiesel. Biomass Convers Biorefin 11(1):1–8

  21. Petković D, Barjaktarovic M, Milošević S, Denić N, Spasić B, Stojanović J, Milovancevic M (2021) Neuro fuzzy estimation of the most influential parameters for Kusum biodiesel performance. Energy 229:120621

    Google Scholar 

  22. Forte M, Jolibois JJ, Pons EM, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43(6):917–928

    Google Scholar 

  23. Abe T, Takizawa Y, Sato S, Kimura N (2007) A parametric experimental study for momentum transfer by plasma actuator. In: 45th AIAA aerospace sciences meeting and exhibit, p 187

  24. Van Dyken R, McLaughlin T, Enloe CL (2004) Parametric investigations of a single dielectric barrier plasma actuator. In: 42nd AIAA aerospace sciences meeting and exhibit

  25. Thomas FO, Corke TC, Iqbal M, Kozlov A, Schatzman D (2009) Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J 47(9):2169–2178

    Google Scholar 

  26. Wicks M, Thomas F, Schatzman D, Bowles P, Corke T, Patel M, Cain A. A parametric investigation of plasma streamwise vortex generator performance. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 824

  27. Jukes TN, Choi K-S (2012) Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Exp Fluids 52(2):329–345

    Google Scholar 

  28. Erfani R, Erfani T, Utyuzhnikov SV, Kontis K (2013) Optimisation of multiple encapsulated electrode plasma actuator. Aerosp Sci Technol 26(1):120–127

    Google Scholar 

  29. Neretti G, Seri P, Taglioli M, Shaw A, Iza F, Borghi CA (2016) Geometry optimization of linear and annular plasma synthetic jet actuators. J Phys D Appl Phys 50(1):015210

    Google Scholar 

  30. Taleghani AS, Shadaram A, Mirzaei M, Abdolahipour S (2018) Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control. J Braz Soc Mech Sci Eng 40(4):173

    Google Scholar 

  31. Greenblatt D, Wygnanski I (2001) Dynamic stall control by periodic excitation, part 1: NACA 0015 parametric study. J Aircr 38(3):430–438

    Google Scholar 

  32. Roth JR, Dai X (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. In: 44th AIAA aerospace sciences meeting and exhibit

  33. Jolibois J, Forte M, Moreau É (2008) Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: optimization of the actuation location along the chord. J Electrostat 66(9–10):496–503

    Google Scholar 

  34. Ozturk C, Bolitho M, Jacob J (2008) Parametric study of thrust generation in plasma microthrusters. In: 46th AIAA aerospace sciences meeting and exhibit

  35. Corke TC, Post ML, Orlov DM (2009) Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids 46(1):1–26

    Google Scholar 

  36. Benard N, Pons-Prat J, Periaux J, Bugeda G, Bonnet J-P, Moreau E (2015) Multi-input genetic algorithm for experimental optimization of the reattachment downstream of a backward-facing-step with surface plasma actuator. In: 46th AIAA plasmadynamics and lasers conference, p 2957

  37. Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet JP, Moreau E (2016) Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57(2):22

    Google Scholar 

  38. Benard N, Caron M, Moreau E (2015) Evaluation of the time-resolved EHD force produced by a plasma actuator by particle image velocimetry—a parametric study. J Phys Conf Ser 646(1):012055

    Google Scholar 

  39. de Quadros R, Grundmann S, Tropea C, Elsemueller J, Ulbrich S (2009) Numerical optimization of DBD plasma actuator operating parameters for active wave cancellation using sinusoidal modulation. In: TSFP digital library online. Begel House Inc

  40. Kriegseis J, Schröter D, Grundmann S, Tropea C (2011) Online-characterization of dielectric barrier discharge plasma actuators for optimized efficiency of aerodynamical flow control applications. J Phys Conf Ser 301(1):012020

    Google Scholar 

  41. Matsuno T, Ota K, Kanatani T, Kawazoe H (2010) Parameter design optimization of plasma actuator configuration for separation control. In: 5th flow control conference, p 4983

  42. Matsuno T, Maeda K, Yamada G, Kawazoe H, Kanazaki M (2013) Improvement of flow control performance of plasma actuator using wind-tunnel test based efficient global optimization. In: 31st AIAA applied aerodynamics conference, p 2512

  43. Sulaiman T, Sekimoto S, Tatsukawa T, Nonomura T, Oyama A, Fujii K (2013) DBD plasma actuator multi-objective design optimization at Reynolds number 63,000: baseline case. In: Fluids Engineering Division summer meeting, vol 55553, p V01BT15A007. American Society of Mechanical Engineers

  44. Sato M, Okada K, Nonomura T, Aono H, Yakeno A, Asada K, Abe Y, Fujii K (2013) Massive parametric study by LES on separated-flow control around airfoil using DBD plasma actuator at Reynolds number 63,000. In: 43rd AIAA fluid dynamics conference, p 2750

  45. Watanabe T, Tatsukawa T, Jaimes AL, Aono H, Nonomura T, Oyama A, Fujii K (2014) Many-objective evolutionary computation for optimization of separated-flow control using a DBD plasma actuator. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE, pp 2849–2854

  46. Williams TJ, Jemcov A, Corke TC (2014) DBD plasma actuator design for optimal flow control. In: 52nd aerospace sciences meeting

  47. Batlle EC, Pereira R, Kotsonis M, de Oliveira G (2017) Airfoil optimisation for dbd plasma actuator in a wind energy environment: design and experimental study. In: 55th AIAA aerospace sciences meeting, p 1578

  48. Yoon J-S, Han J-H (2014) One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust. J Phys D Appl Phys 47(40):405202

    Google Scholar 

  49. Seth UK, Traoré P, Duran-Olivencia FJ, Moreau E, Vazquez PA (2018) Parametric study of a DBD plasma actuation based on the Suzen–Huang model. J Electrostat 93:1–9

    Google Scholar 

  50. Omidi J (2015) Numerical simulation of DBD plasma actuator and optimization for separation control. Master of Science thesis, Sharif University of Technology, December 2015

  51. Mazaheri K, Omidi J, Kiani KC (2016) Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model. Comput Fluids 140:371–384

    MathSciNet  MATH  Google Scholar 

  52. Omidi J, Mazaheri K (2017) Improving the performance of a numerical model to simulate the EHD interaction effect induced by dielectric barrier discharge. Int J Heat Fluid Flow 67:79–94

    Google Scholar 

  53. Suzen YB, Huang PG, Jacob JD, Ashpis DE (2005) Numerical simulation of plasma based flow control applications. AIAA paper 2005-4633

  54. Suzen YB, Huang PG (2006) Simulation of flow separation control using plasma actuators. AIAA paper 2006-877

  55. Bouchmal A (2011) Modeling of dielectric-barrier discharge actuator. Master of Science Thesis (Delft University of Technology, 2011)

  56. Ibrahim IH, Skote M (2012) Simulations of the linear plasma synthetic jet actuator utilizing a modified Suzen–Huang model. Phys Fluids 24(11):113602

    Google Scholar 

  57. Abdollahzadeh M, Pascoa JC, Oliveira PJ (2014) Modified split-potential model for modeling the effect of DBD plasma actuators in high altitude flow control. Curr Appl Phys 14:1160–1170

    Google Scholar 

  58. Enloe CL, McLaughlin TE, Vandyken RD, Kachner KD (2004) Mechanisms and responses of a single dielectric barrier discharge actuator: geometric effects. AIAA J 42(3):595–604

    Google Scholar 

  59. Enloe CL, McLaughlin TE, VanDyken RD, Fischer JC (2004) Plasma structure in the aerodynamic plasma actuator. AIAA paper 844

  60. Cherrington BE (2014) Gaseous electronics and gas lasers, vol 94. Elsevier, Amsterdam

    Google Scholar 

  61. Mehdipoor M, Sohbatzadeh F, Zabihpoor M (2020) Flow control with plasma-based actuator in different velocity regimes: Momentum and heat transfer effects. Contrib Plasma Phys 60(2):e201900037

    Google Scholar 

  62. Boeuf JP, Pitchford LC (2005) Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J Appl Phys 97(10):103307

    Google Scholar 

  63. Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42:505–529

    Google Scholar 

  64. Omidi J, Mazaheri K (2020) Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters. Phys Fluids 32(7):077107

    Google Scholar 

  65. Menter FR (2009) Review of the shear-stress transport turbulence model experience from an industrial perspective. Int J Comput Fluid Dyn 23(4):305–316

    MATH  Google Scholar 

  66. Durscher R, Roy S (2012) Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Exp Fluids 53(4):1165–1176

    Google Scholar 

  67. Wang XN, Wang WB, Huang Y, Huang ZB, Sheng ZH (2014) Airfoil flow control using DBD plasma actuators. In: Fluid–structure-sound interactions and control. Springer, Berlin, Heidelberg, pp 141–147

  68. Benard N, Moreau E (2012) Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Appl Phys Lett 100(19):193503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Mazaheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, J., Mazaheri, K. Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: operational parameters. Engineering with Computers 39, 2187–2208 (2023). https://doi.org/10.1007/s00366-022-01623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01623-8

Keywords

Navigation