Skip to main content
Log in

F\(_3\)ORNITS : a flexible variable step size non-iterative co-simulation method handling subsystems with hybrid advanced capabilities

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper introduces the F\(_3\)ORNITS non-iterative co-simulation algorithm in which F\(_3\) stands for the 3 flexible aspects of the method: flexible polynomial order representation of coupling variables, flexible time-stepper applying variable co-simulation step size rules on subsystems allowing it, and flexible scheduler orchestrating the meeting times among the subsystems and capable of asynchronousness when subsystems’ constraints require it. The motivation of the F\(_3\)ORNITS method is to accept any kind of co-simulation model as far as they represent circuits (0D models, such as ODE or DAE), including any kind of subsystem (open circuits), regardless on their available capabilities. Indeed, one of the major problems in industry is that the subsystems usually have constraints or lack of advanced capabilities making it impossible to implement most of the advanced co-simulation algorithms on them. The method makes it possible to preserve the dynamics of the coupling constraints when necessary as well as to avoid breaking \(C^1\) smoothness at communication times, and also to adapt the co-simulation step size in a way that is robust both to zero-crossing variables (contrary to classical relative error-based criteria) and to jumps. Five test cases are presented to illustrate the robustness of the F\(_3\)ORNITS method as well as its higher accuracy than the non-iterative Jacobi coupling algorithm (the most commonly used method in industry) for a smaller number of co-simulation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

Notes

  1. Please note that the definition of the link function in [10] inverts the indices i and j, and the indices k and l for the sake of consistency with the rest of the paper.

  2. For the sake of readability, we will sometimes write only the last variable of \(\Omega _{q-1}^{\mathrm{Ex}}\) and \(\Omega _{q-2}^{\mathrm{CLS}}\).

References

  1. Amemiya T (1985) Advanced econometrics. Harvard University Press, Cambridge

    Google Scholar 

  2. Arnold M, Unther MG (2001) Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numer Math 41(1):1–25

    Article  MathSciNet  Google Scholar 

  3. Bartel A, Brunk M, Günther M, Schöps S (2013) Dynamic iteration for coupled problems of electronic circuits and distributed devices. SIAM J Sci Comput 35(2):315–335. https://doi.org/10.1137/1208671111

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedikt M, Watzenig D, Zehetner J, Hofer A (Jun 2013) NEPCE—a nearly energy-preserving coupling element for weak-coupled problems and co-simulation. In: Proceedings of the international conference on computational methods for coupled problems in science and engineering, Santa Eulalia, Spain, pp 1–12

  5. Berrut JP, Trefethen LN (2004) Barycentric Lagrange interpolation. SIAM Rev 46(3):501–517

    Article  MathSciNet  MATH  Google Scholar 

  6. Blochwitz T, Otter M, Åkesson J, Arnold M, Clauss C, Elmqvist H, Friedrich M, Junghanns A, Mauss J, Neumerkel D, Olsson H, Viel A (nov 2012) Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th international Modelica conference, pp 173–184. Munich, Germany. The Modelica Association. Lonköping University Electronic Press. https://doi.org/10.3384/ecp12076173

  7. Busch M (2016) Continuous approximation techniques for co-simulation methods: analysis of numerical stability and local error. ZAMM J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 96(9):1061–1081. https://doi.org/10.1002/zamm.201500196

    Article  MathSciNet  Google Scholar 

  8. Busch M (2019) Performance improvement of explicit co-simulation methods through continuous extrapolation. In: IUTAM symposium on solver-coupling and co-simulation. IUTAM bookseries, vol 35, pp 57–80. IUTAM. https://doi.org/10.1007/978-3-030-14883-6_4, iUTAM symposium on solver-coupling and co-simulation, Darmstadt, Germany, September 18–20, 2017

  9. Dronka S, Rauh J (2006) Co-simulation-interface for user-force-elements. In: Proceedings of SIMPACK user meeting, Baden-Baden

  10. Éguillon Y, Lacabanne B, Tromeur-Dervout D (2019) IFOSMONDI: a generic co-simulation approach combining iterative methods for coupling constraints and polynomial interpolation for interfaces smoothness. In: Proceedings of the 9th international conference on simulation and modeling methodologies, technologies and applications, July 29–July 31, 2019. INSTICC, Prague, Czech Republic, pp 176–186. https://doi.org/10.5220/0007977701760186

  11. Éguillon Y, Lacabanne B, Tromeur-Dervout D (2021) IFOSMONDI co-simulation algorithm with Jacobian-free methods in PETSc. Eng Comput. https://doi.org/10.1007/s00366-021-01558-6

    Article  Google Scholar 

  12. Feki ABKE, Duval L, Faure C, Simon D, Gaid MB (2017) CHOPtrey: contextual online polynomial extrapolation for enhanced multi-core co-simulation of complex systems. Simulation 93(3):185–200. https://doi.org/10.1177/0037549716684026

    Article  Google Scholar 

  13. Fritzson P (2015) Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical approach, 2nd edn. Wiley-IEEE Press, Hoboken

    Google Scholar 

  14. Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H (2018) Co-simulation: a survey. ACM Comput Surv (CSUR) 51(3):1–33

    Article  Google Scholar 

  15. Gomes C, Oakes B, Moradi M, Gámiz A, Mendo J, Dutré S, Denil J, Vangheluwe H (2019) HintCO—hint-based configuration of co-simulations. In: Proceedings of the 9th international conference on simulation and modeling methodologies, technologies and applications—SIMULTECH. INSTICC, SciTePress, pp 57–68. https://doi.org/10.5220/0007830000570068

  16. Gu B, Asada HH (2004) Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models. J Dyn Syst Meas Control 126(1):1. https://doi.org/10.1115/1.1648307

    Article  Google Scholar 

  17. Hildebrand FB (1956) Introduction to numerical analysis, 2nd edn. Dover Publications, New York

    MATH  Google Scholar 

  18. Johnson MA, Moradi MH, Crowe J (2005) PID control new identification and design methods. Springer, Berlin

    Google Scholar 

  19. Kraft J, Klimmek S, Meyer T, Schweizer B (2021) Implicit co-simulation and solver-coupling: efficient calculation of interface-Jacobian and coupling sensitivities/gradients. J Comput Nonlinear Dynam. https://doi.org/10.1115/1.4051823

    Article  Google Scholar 

  20. Kraft J, Meyer T, Schweizer B (aug 2019) Parallel co-simulation approach with macro-step size and order control algorithm. In: International design engineering technical conferences and computers and information in engineering conference, volume 6: 15th international conference on multibody systems, nonlinear dynamics, and control. https://doi.org/10.1115/DETC2019-97781

  21. Kübler R, Schiehlen W (2000) Two methods of simulator coupling. Math Comput Model Dyn Syst 6(2):93–113. https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093. https://www.tandfonline.com/doi/abs/10.1076/1387-3954%28200006%296%3A2%3B1-M%3BFT093

  22. Li P, Meyer T, Lu D, Schweizer B (2017) Numerical stability of explicit and implicit co-simulation methods. In: Papadrakakis M, Onate E, Schrefler B (eds) Coupled problems in science and engineering VII (coupled problems 2017), National Technical University of Athens; Technical University of Catalonia, International Center for Numerical Methods in Engineering; University of Padova, pp 1549–1260

  23. Li P, Yuan Q, Lu D, Meyer T, Schweizer B (2020) Improved explicit co-simulation methods incorporating relaxation techniques. Arch Appl Mech 90:17–46. https://doi.org/10.1007/s00419-019-01597-y

    Article  Google Scholar 

  24. Meyer T, Kraft J, Schweizer B (2021) Co-simulation: error estimation and macro-step size control. J Comput Nonlinear Dynam 16(4). https://doi.org/10.1115/1.4048944

  25. Ochel LA, Braun R, Thiele B, Asghar A, Buffoni L, Eek M, Fritzson P, Fritzson D, Horkeby S, Hällquist R, Kinnander Å, Palanisamy A, Pop A, Sjölund M (2019) OMSimulator—integrated FMI and TLM-based co-simulation with composite model editing and SSP. In: Haumer A (ed) Proceedings of the 13th international Modelica conference, Regensburg, Germany, March 4–6, 2019. Linköping electronic conference proceedings, vol 157. Linköping University Electronic Press, p 157:007. https://doi.org/10.3384/ecp1915769

  26. Peiret A, González F, Kövecses J, Teichmann M (2020) Co-simulation of multibody systems with contact using reduced interface models. J Comput Nonlinear Dynam 15(4). https://doi.org/10.1115/1.4046052

  27. Sadjina S, Kyllingstad LT, Skjong S, Pedersen E (2017) Energy conservation and power bonds in co-simulations: non-iterative adaptive step size control and error estimation. Eng Comput 33(3):607–620. https://doi.org/10.1007/s00366-016-0492-8

    Article  Google Scholar 

  28. Sadjina S, Pedersen E (2020) Energy conservation and coupling error reduction in non-iterative co-simulations. Eng Comput 36:1579–1587. https://doi.org/10.1007/s00366-019-00783-4

    Article  Google Scholar 

  29. Schierz T, Arnold M, Clauß C (2012) Co-simulation with communication step size control in an FMI compatible master algorithm. In: Proceedings of the 9th International Modelica Conference (Munich, 2012), pp 205–214. https://doi.org/10.3384/ecp12076205

  30. Schweizer B, Li P, Lu D (2015) Explicit and implicit cosimulation methods: stability and convergence analysis for different solver coupling approaches. J Comput Nonlinear Dynam 10(5). https://doi.org/10.1115/1.4028503

  31. Schweizer B, Li P, Lu D (2016) Implicit co-simulation methods: stability and convergence analysis for solver coupling approaches with algebraic constraints. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 96(8):986–1012. https://doi.org/10.1002/zamm.201400087

    Article  MathSciNet  Google Scholar 

  32. Schweizer B, Lu D (2014) Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints. ZAMM J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 95(9). https://doi.org/10.1002/zamm.201300191

  33. Schweizer B, Lu D (2015) Stabilized index-2 co-simulation approach for solver coupling with algebraic constraints. Multibody Syst Dyn 34:129–161. https://doi.org/10.1007/s11044-014-9422-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Sicklinger S, Belsky V, Engelman B, Elmqvist H, Olsson H, Wüchner R, Bletzinger KU (2014) Interface Jacobian-based co-simulation. Int J Numer Methods Eng 98:418–444. https://doi.org/10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  35. Skelboe S (1992) Methods for parallel integration of stiff systems of ODEs. BIT Numer Math 32(4):689–701

    Article  MathSciNet  MATH  Google Scholar 

  36. Stettinger G, Horn M, Benedikt M, Zehetner J (2014) A model-based approach for prediction-based interconnection of dynamic systems. In: Proceedings of the IEEE Conference on Decision and Control, Los Angeles, CA, USA, vol 2015-February, pp 3286–3291. https://doi.org/10.1109/CDC.2014.7039897

  37. Stettinger G, Horn M, Benedikt M, Zehetner J (2014) Model-based coupling approach for non-iterative real-time co-simulation. In: European control conference (ECC), pp 2084–2089. https://doi.org/10.1109/ECC.2014.6862242

  38. Stoer J, Bulirsch R (2002) Introduction to numerical analysis. Texts in applied mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  39. Tavella JP, Caujolle M, Tan C, Plessis G, Schumann M, Vialle S, Dad C, Cuccuru A, Revol S (2016) Toward an hybrid co-simulation with the FMI-CS standard. https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183, research report

  40. Viot L, Saas L, De Vuyst F (2018) Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors. Int J Multiscale Comput Eng 16:6. https://doi.org/10.1615/IntJMultCompEng.2018025643, https://hal.utc.fr/hal-01958872

  41. Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. ICES J Mar Sci 3(1):3–51. https://doi.org/10.1093/icesjms/3.1.3

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Siemens Digital Industries Software for supporting this work, and Institut Camille Jordan and Université de Lyon for supervising this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohan Eguillon.

Ethics declarations

Conflict of interest

Authors Yohan Eguillon and Bruno Lacabanne are currently employees at Siemens Digital Industries Software. The patent “Advanced cosimulation scheduler for dynamic system simulation” is currently pending to Siemens, and includes the F\(_3\)ORNITS algorithm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by organization Siemens Industry Software.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguillon, Y., Lacabanne, B. & Tromeur-Dervout, D. F\(_3\)ORNITS : a flexible variable step size non-iterative co-simulation method handling subsystems with hybrid advanced capabilities. Engineering with Computers 38, 4501–4543 (2022). https://doi.org/10.1007/s00366-022-01610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01610-z

Keywords

Navigation