Skip to main content
Log in

An adaptive bivariate decomposition method for interval optimization problems with multiple uncertain parameters

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A novel interval optimization method based on an adaptive bivariate decomposition algorithm is developed to solve the engineering uncertain optimization problems with multiple interval parameters. Unlike the traditional highly time-consuming nested optimization approach, the interval perturbation method-based interval optimization avoids tedious inner optimization, nonetheless, it faces huge computational challenges in the optimization issues with large uncertainties and requires derivative information that may be unavailable for complex engineering systems. To overcome these shortcomings, an adaptive bivariate decomposition method (ABDM) is proposed to compute the interval ranges of the uncertain function. In the optimization, the objective function and constraints are decomposed by ABDM into a sum of several one- and two-dimensional subsystems. The extrema of the subsystems are approximately calculated through subinterval analysis, and an adaptive convergence strategy is applied to guarantee the accuracy of the obtained bounds. Based on the interval order relation and the reliability-based possibility degree of interval, the interval uncertain optimization model is converted into a deterministic optimization one. To effectively solve the deterministic optimization model, a robust optimization solver known as lightning attachment procedure optimization is employed in the optimization algorithm. Finally, a numerical example and two engineering applications illustrate the accuracy and effectiveness of the method for uncertain optimization issues with multiple interval parameters. Moreover, the new method does not need to determine the derivative information of the uncertain objective and constraints, and thus applies to different engineering optimization issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

X :

n-Dimensional design vector

U :

q-Dimensional interval uncertainty vector

U L :

Lower bound of the uncertain vector U

U R :

Upper bound of the uncertain vector U

U I :

Interval number

U i :

iTh interval uncertainty parameter

\(U_{i}^{{\text{C}}}\) :

Midpoint of ith interval uncertainty parameter

\(\alpha_{i}\) :

Uncertain level

\(b_{j}^{{\text{I}}}\) :

Allowable interval of jth constraint

\(f\left( {{\varvec{X}},{\varvec{U}}} \right)\) :

Uncertain objective function

\(g_{j} \left( {{\varvec{X}},{\varvec{U}}} \right)\) :

jTh uncertain constraint

\(c\left( \cdot \right)\) :

Midpoint of an interval number

\(w\left( \cdot \right)\) :

Radius of an interval number

\(\le_{cw}\) :

Preference of the decision maker over the midpoint and radius of an interval number

\(P_{r}\) :

Interval possibility degree

\(\lambda_{j}\) :

Interval possibility level for jth constraint

\(f({\varvec{X}},{\varvec{U}}^{{\text{C}}} )\) :

Value of the objective at the midpoint of the uncertain vector

\(g_{j} ({\varvec{X}},{\varvec{U}}^{{\text{C}}} )\) :

Value of the jth constraint at the midpoint of the uncertain vector

\(\left( {U_{i}^{{\text{I}}} } \right)_{{m_{i} }}\) :

mi-Th subinterval of the ith interval parameter

\(h\) :

Number of subintervals

\({\varvec{U}}_{{m_{1} \cdots m_{q} }}\) :

Subinterval combination of 1D and 2D functions

\(r\) :

Number of subinterval combinations

N p :

Number of the decision variables

\({\varvec{X}}_{i}^{{{\text{tp}}}}\) :

Initial ith test point

\({\varvec{X}}_{i}^{{\text{L}}}\) :

Lower bounds of decision vector \({\varvec{X}}_{i}\)

\({\varvec{X}}_{i}^{{\text{R}}}\) :

Upper bounds of decision vector \({\varvec{X}}_{i}\)

rand:

Random number in [0,1]

\({\text F}_{i}^{{{\text{tp}}}}\) :

Fitness value at \({\varvec{X}}_{i}^{{{\text{tp}}}}\)

\({\varvec{X}}^{{{\text{ave}}}}\) :

Average of all test points

\({\text{F}}^{{{\text{ ave}}}}\) :

Average fitness value

\({\varvec{X}}_{j}^{{{\text{pp}}}}\) :

Potential point

\({\varvec{X}}_{i}^{\text{tp\_new}}\) :

New ith test point

\({\text{F}}_{i}^{\text{tp\_new}}\) :

New fitness value at \({\varvec{X}}_{i}^{\text{tp\_new}}\)

S :

Exponential factor

\({\varvec{X}}^{{{\text{best}}}}\) :

The best test points

\({\varvec{X}}^{{{\text{worst}}}}\) :

The worst test points

ite max :

Maximum number of iterations

\(\beta\) :

Weight coefficient of the two objective functions

\(\xi\) :

Adjusting parameter

\(\psi_{i}\) :

Regularization factors

\(\delta\) :

Penalty function

\(\varphi \left( \cdot \right)\) :

Judgment function for constraint

\(\tilde{f}\left( {{\varvec{X}},{\varvec{U}}} \right)\) :

Fitness function

V :

Volume of the 25 bar truss

d i :

Nodal displacement of the 25 bar truss

M :

Mass of the truck frame

S max :

Maximum stress of the truck frame

D max :

Maximum displacement of the truck frame

References

  1. Landa Becerra R, Coello CAC (2006) Cultured differential evolution for constrained optimization. Comput Meth Appl Mech Eng 195(33):4303–4322. https://doi.org/10.1016/j.cma.2005.09.006

    Article  MathSciNet  MATH  Google Scholar 

  2. Gholizadeh S, Samavati OA (2011) Structural optimization by wavelet transforms and neural networks. Appl Math Model 35(2):915–929. https://doi.org/10.1016/j.apm.2010.07.046

    Article  MathSciNet  MATH  Google Scholar 

  3. Munk DJ, Vio GA, Steven GP (2015) Topology and shape optimization methods using evolutionary algorithms: a review. Struct Multidiscip Optim 52(3):613–631. https://doi.org/10.1007/s00158-015-1261-9

    Article  MathSciNet  Google Scholar 

  4. Campione I, Fragassa C, Martini A (2019) Kinematics optimization of the polishing process of large-sized ceramic slabs. Int J Adv Manuf Technol 103(1–4):1325–1336. https://doi.org/10.1007/s00170-019-03623-3

    Article  Google Scholar 

  5. Kumar V, Diyaley S, Chakraborty S (2020) Teaching-learning-based parametric optimization of an electrical discharge machining process. Facta Univ Ser Mech Eng 18(2):281–300. https://doi.org/10.22190/fume200218028k

    Article  Google Scholar 

  6. Peng HJ, Shi BY, Wang XW, Li C (2019) Interval estimation and optimization for motion trajectory of overhead crane under uncertainty. Nonlinear Dyn 96(2):1693–1715. https://doi.org/10.1007/s11071-019-04879-w

    Article  Google Scholar 

  7. Wang LQ, Yang GL, Sun QQ, Ge JL (2019) An uncertain optimization method for overall ballistics based on stochastic programming and a neural network surrogate model. Eng Optim 51(4):663–679. https://doi.org/10.1080/0305215x.2018.1484122

    Article  MathSciNet  MATH  Google Scholar 

  8. Zakaria A, Ismail FB, Lipu MSH, Hannan MA (2020) Uncertainty models for stochastic optimization in renewable energy applications. Renew Energy 145:1543–1571. https://doi.org/10.1016/j.renene.2019.07.081

    Article  Google Scholar 

  9. Xu FJ, Yang GL, Wang LQ, Sun QZ (2020) Interval uncertain optimization for interior ballistics based on Chebyshev surrogate model and affine arithmetic. Eng Optim 53(8):1331–1348. https://doi.org/10.1080/0305215x.2020.1790551

    Article  MathSciNet  Google Scholar 

  10. Liu BD, Iwamura K (1997) Modelling stochastic decision systems using dependent-chance programming. Eur J Oper Res 101(1):193–203. https://doi.org/10.1016/0377-2217(95)00371-1

    Article  MATH  Google Scholar 

  11. Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167(1):96–115. https://doi.org/10.1016/j.ejor.2004.01.046

    Article  MathSciNet  MATH  Google Scholar 

  12. Azaron A, Brown KN, Tarim SA, Modarres M (2008) A multi-objective stochastic programming approach for supply chain design considering risk. Int J Prod Econ 116(1):129–138. https://doi.org/10.1016/j.ijpe.2008.08.002

    Article  Google Scholar 

  13. Liu BD, Iwamura K (2001) Fuzzy programming with fuzzy decisions and fuzzy simulation-based genetic algorithm. Fuzzy Sets Syst 122(2):253–262. https://doi.org/10.1016/s0165-0114(00)00035-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Kelesoglu O (2007) Fuzzy multiobjective optimization of truss-structures using genetic algorithm. Adv Eng Softw 38(10):717–721. https://doi.org/10.1016/j.advengsoft.2007.03.003

    Article  Google Scholar 

  15. Pishvaee MS, Fazli Khalaf M (2016) Novel robust fuzzy mathematical programming methods. Appl Math Model 40(1):407–418. https://doi.org/10.1016/j.apm.2015.04.054

    Article  MathSciNet  MATH  Google Scholar 

  16. Lai KK, Wang SY, Xu JP, Zhu SS, Fang Y (2002) A class of linear interval programming problems and its application to portfolio selection. IEEE Trans Fuzzy Syst 10(6):698–704. https://doi.org/10.1109/tfuzz.2002.805902

    Article  Google Scholar 

  17. Lu HW, Cao MF, Wang Y, Fan X, He L (2014) Numerical solutions comparison for interval linear programming problems based on coverage and validity rates. Appl Math Model 38(3):1092–1100. https://doi.org/10.1016/j.apm.2013.07.030

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang C, Zhang ZG, Zhang QF, Han X, Xie HC, Liu J (2014) A new nonlinear interval programming method for uncertain problems with dependent interval variables. Eur J Oper Res 238(1):245–253. https://doi.org/10.1016/j.ejor.2014.03.029

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin JH, Liu M, Hao JH, Jiang SL (2016) A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry. Comput Oper Res 72:189–203. https://doi.org/10.1016/j.cor.2016.03.002

    Article  MATH  Google Scholar 

  20. Sun J, Gong DW, Zeng XJ, Geng N (2018) An ensemble framework for assessing solutions of interval programming problems. Inf Sci 436:146–161. https://doi.org/10.1016/j.ins.2018.01.006

    Article  MathSciNet  MATH  Google Scholar 

  21. Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48(2):219–225. https://doi.org/10.1016/0377-2217(90)90375-L

    Article  MATH  Google Scholar 

  22. Chanas S, Kuchta D (1996) Multiobjective programming in optimization of interval objective functions—A generalized approach. Eur J Oper Res 94(3):594–598. https://doi.org/10.1016/0377-2217(95)00055-0

    Article  MATH  Google Scholar 

  23. Jiang C, Han X, Liu GR, Liu GP (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res 188(1):1–13. https://doi.org/10.1016/j.ejor.2007.03.031

    Article  MathSciNet  MATH  Google Scholar 

  24. Fu C, Liu Y, Xiao Z (2019) Interval differential evolution with dimension-reduction interval analysis method for uncertain optimization problems. Appl Math Model 69:441–452. https://doi.org/10.1016/j.apm.2018.12.025

    Article  MathSciNet  MATH  Google Scholar 

  25. Fu C, Cao L (2019) An uncertain optimization method based on interval differential evolution and adaptive subinterval decomposition analysis. Adv Eng Softw 134:1–9. https://doi.org/10.1016/j.advengsoft.2019.05.001

    Article  Google Scholar 

  26. Wang L, Chen Z, Yang G, Sun Q, Ge J (2020) An interval uncertain optimization method using back-propagation neural network differentiation. Comput Meth Appl Mech Eng 366:113065. https://doi.org/10.1016/j.cma.2020.113065

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiachang T, Lixiong C, Mi C, Fu C, Liu Q (2021) Interval assessments of identified parameters for uncertain structures. Eng Comput. https://doi.org/10.1007/s00366-021-01432-5

    Article  Google Scholar 

  28. Wang L, Yang G, Li Z, Xu F (2021) An efficient nonlinear interval uncertain optimization method using Legendre polynomial chaos expansion. Appl Soft Comput 108:107454. https://doi.org/10.1016/j.asoc.2021.107454

    Article  Google Scholar 

  29. Qi WC, Qiu ZP (2012) A collocation interval analysis method for interval structural parameters and stochastic excitation. Sci China-Phys Mech Astron 55(1):66–77. https://doi.org/10.1007/s11433-011-4570-z

    Article  Google Scholar 

  30. Yin S, Yu D, Luo Z, Xia B (2018) An arbitrary polynomial chaos expansion approach for response analysis of acoustic systems with epistemic uncertainty. Comput Meth Appl Mech Eng 332:280–302. https://doi.org/10.1016/j.cma.2017.12.025

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu YS, Wang XJ, Wang L, Lv Z (2019) A Bayesian collocation method for static analysis of structures with unknown-but-bounded uncertainties. Comput Meth Appl Mech Eng 346:727–745. https://doi.org/10.1016/j.cma.2018.08.043

    Article  MathSciNet  MATH  Google Scholar 

  32. Qiu ZP, Wang XJ, Chen JY (2006) Exact bounds for the static response set of structures with uncertain-but-bounded parameters. Int J Solids Struct 43(21):6574–6593. https://doi.org/10.1016/j.ijsolstr.2006.01.012

    Article  MathSciNet  MATH  Google Scholar 

  33. Qiu Z, Xia Y, Yang J (2007) The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem. Comput Methods Appl Mech Eng 196(49–52):4965–4984. https://doi.org/10.1016/j.cma.2007.06.022

    Article  MATH  Google Scholar 

  34. Qiu ZP, Lv Z (2017) The vertex solution theorem and its coupled framework for static analysis of structures with interval parameters. Int J Numer Methods Eng 112(7):711–736. https://doi.org/10.1002/nme.5523

    Article  MathSciNet  Google Scholar 

  35. Chen SH, Lian HD, Yang XW (2002) Interval static displacement analysis for structures with interval parameters. Int J Numer Methods Eng 53(2):393–407. https://doi.org/10.1002/nme.281

    Article  MATH  Google Scholar 

  36. Qiu ZP, Ma Y, Wang XJ (2004) Comparison between non-probabilistic interval analysis method and probabilistic approach in static response problem of structures with uncertain-but-bounded parameters. Commun Numer Methods Eng 20(4):279–290. https://doi.org/10.1002/cnm.668

    Article  MATH  Google Scholar 

  37. Xia BZ, Yu DJ (2013) Modified interval perturbation finite element method for a structural-acoustic system with interval parameters. J Appl Mech Trans Asme 80(4):041027. https://doi.org/10.1115/1.4023021

    Article  Google Scholar 

  38. Dinh-Cong D, Hoa NV, Nguyen-Thoi T (2020) An effective optimization-based parameterized interval analysis approach for static structural response with multiple uncertain parameters. Eng Comput 36(4):1889–1902. https://doi.org/10.1007/s00366-019-00803-3

    Article  Google Scholar 

  39. Jie H, Wu Y, Ding J (2015) An adaptive metamodel-based global optimization algorithm for black-box type problems. Eng Optim 47(11):1459–1480. https://doi.org/10.1080/0305215x.2014.979814

    Article  MathSciNet  Google Scholar 

  40. Zhang D, Han X, Jiang C, Liu J, Li Q (2017) Time-dependent reliability analysis through response surface method. J Mech Des 139(4):041404. https://doi.org/10.1115/1.4035860

    Article  Google Scholar 

  41. Cheng J, Liu Z, Tang M, Tan J (2017) Robust optimization of uncertain structures based on normalized violation degree of interval constraint. Comput Struct 182:41–54. https://doi.org/10.1016/j.compstruc.2016.10.010

    Article  Google Scholar 

  42. Elishakoff I, Elettro F (2014) Interval, ellipsoidal, and super-ellipsoidal calculi for experimental and theoretical treatment of uncertainty: Which one ought to be preferred? Int J Solids Struct 51(7):1576–1586. https://doi.org/10.1016/j.ijsolstr.2014.01.010

    Article  Google Scholar 

  43. Jiang C, Han X, Liu GR (2007) Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Comput Meth Appl Mech Eng 196(49–52):4791–4800. https://doi.org/10.1016/j.cma.2007.03.024

    Article  MATH  Google Scholar 

  44. Jiang C, Han X, Guan FJ, Li YH (2007) An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method. Eng Struct 29(11):3168–3177. https://doi.org/10.1016/j.engstruct.2007.01.020

    Article  Google Scholar 

  45. Chakraborty S, Roy BK (2011) Reliability based optimum design of tuned mass damper in seismic vibration control of structures with bounded uncertain parameters. Probab Eng Eng Mech 26(2):215–221. https://doi.org/10.1016/j.probengmech.2010.07.007

    Article  Google Scholar 

  46. Wei T, Li F, Meng G, Li H (2021) A univariate Chebyshev polynomials method for structural systems with interval uncertainty. Probab Eng Eng Mech 66:103172. https://doi.org/10.1016/j.probengmech.2021.103172

    Article  Google Scholar 

  47. Wei T, Li F, Meng G, Zuo W (2021) Static response analysis of uncertain structures with large-scale unknown-but-bounded parameters. Int J Appl Mech 13(1):2150004. https://doi.org/10.1142/S1758825121500046

    Article  Google Scholar 

  48. Jiang C, Han X, Li D (2012) A new interval comparison relation and application in interval number programming for uncertain problems. Cmc-Comput Mater Contin 27(3):275–303. https://doi.org/10.1016/j.mssp.2011.05.010

    Article  Google Scholar 

  49. Koyluoglu HU, Cakmak AS, Nielsen S (1995) Interval algebra to deal with pattern loading and structural uncertainties. J Eng Mech 121(11):1149–1157. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:11(1149)

    Article  Google Scholar 

  50. Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl Soft Comput 59:596–621. https://doi.org/10.1016/j.asoc.2017.06.033

    Article  Google Scholar 

  51. Pinto VT, Oliveira Rocha LA, Fragassa C, dos Santos ED, Isoldi LA (2020) Multiobjective geometric analysis of stiffened plates under bending through constructal design method. J Appl Comput Mech 6:1438–1449. https://doi.org/10.22055/jacm.2020.35248.2608

    Article  Google Scholar 

  52. Pavlovic A, Sintoni D, Fragassa C, Minak G (2020) Multi-objective design optimization of the reinforced composite roof in a solar vehicle. Appl Sci-Basel 10(8):2665. https://doi.org/10.3390/app10082665

    Article  Google Scholar 

  53. Pavlovic A, Fragassa C (2020) Geometry optimization by fem simulation of the automatic changing gear. Rep Mech Eng 1(1):199–205. https://doi.org/10.31181/rme200101199p

    Article  Google Scholar 

  54. Lukic L, Djapic M, Fragassa C, Pavlovic A (2018) Optimization model for machining processes design in flexible manufacturing systems. J Adv Manuf Syst 17(2):137–153. https://doi.org/10.1142/s0219686718500099

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 51775230) and the Education Department of Jilin Province of China (Grant no. JJKH20200952KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Interval perturbation method-based interval uncertain optimization

The interval perturbation method utilizes Taylor expansion to evaluate the interval bounds of Eqs. (3) and (9). By applying the first-order Taylor expansion at the interval midpoint vector UC, the lower and upper bounds of the uncertain objective function can be written as:

$$\begin{gathered} f^{{\text{L}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right) - \sum\limits_{j = 1}^{n} {\left| {\frac{{\partial f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)}}{{\partial U_{j} }}\Delta U_{j} } \right|} \hfill \\ f^{{\text{R}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right) + \sum\limits_{j = 1}^{n} {\left| {\frac{{\partial f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)}}{{\partial U_{j} }}\Delta U_{j} } \right|} \hfill \\ \end{gathered}$$
(37)

where \(f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)\) and \({{\partial f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)} \mathord{\left/ {\vphantom {{\partial f\left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)} {\partial U_{j} }}} \right. \kern-\nulldelimiterspace} {\partial U_{j} }}\) are the specific value and the first-order partial derivative of the uncertain objective function at UC, respectively; \(\Delta U_{j} = U_{j} - U_{j}^{{\text{C}}}\). Likewise, the interval values of the jth constraint in Eq. (9) can be expressed as:

$$\begin{gathered} g_{j}^{{\text{L}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = g_{j} \left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right) - \sum\limits_{j = 1}^{n} {\left| {\frac{{\partial g_{j} \left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)}}{{\partial U_{j} }}\Delta U_{j} } \right|} \hfill \\ g_{j}^{{\text{R}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = g_{j} \left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right) + \sum\limits_{j = 1}^{n} {\left| {\frac{{\partial g_{j} \left( {{\varvec{X}},{\varvec{U}}^{{\text{C}}} } \right)}}{{\partial U_{j} }}\Delta U_{j} } \right|} \hfill \\ \end{gathered}$$
(38)

Like the proposed method, IPM-based IUO avoids time-consuming inner optimization but has two inherent shortcomings. First, its precision is high only when the nonlinearity of the function is weak or the uncertainties of interval parameter is small. Second, it requires the first-order derivative information, which is usually too complex to be derived for most practical engineering problems.

Vertex method-based interval uncertain optimization

The vertex method assumes that the interval bounds of the structural response can be reached at the vertex of the uncertain region. Hence, by substituting the ends of the interval parameters into Eq. (3), the lower and upper bounds can be formulated as:

$$\begin{gathered} f^{{\text{L}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = \min \left\{ {f\left( {{\varvec{X}},{\varvec{U}}_{V1} } \right),f\left( {{\varvec{X}},{\varvec{U}}_{V2} } \right), \ldots ,f\left( {{\varvec{X}},{\varvec{U}}_{{V2^{q} }} } \right)} \right\} \hfill \\ f^{{\text{R}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = \max \left\{ {f\left( {{\varvec{X}},{\varvec{U}}_{V1} } \right),f\left( {{\varvec{X}},{\varvec{U}}_{V2} } \right), \ldots ,f\left( {{\varvec{X}},{\varvec{U}}_{{V2^{q} }} } \right)} \right\} \hfill \\ \end{gathered}$$
(39)

where

$$\begin{gathered} {\varvec{U}}_{V1} \;{ = }\;\left[ {U_{1}^{{\text{L}}} ,U_{2}^{{\text{L}}} , \ldots ,U_{q}^{{\text{L}}} } \right] \hfill \\ {\varvec{U}}_{V2} \;{ = }\left[ {U_{1}^{{\text{L}}} ,U_{2}^{{\text{L}}} , \ldots ,U_{q}^{{\text{R}}} } \right] \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \hfill \\ {\varvec{U}}_{{V2^{q} }} { = }\left[ {U_{1}^{{\text{R}}} ,U_{2}^{{\text{R}}} , \ldots ,U_{q}^{{\text{R}}} } \right] \hfill \\ \end{gathered}$$
(40)

Similarly, the upper and lower bounds of the jth uncertain constraint can be determined as:

$$\begin{gathered} g_{j}^{{\text{L}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = \min \left\{ {g_{j} \left( {{\varvec{X}},{\varvec{U}}_{V1} } \right),g_{j} \left( {{\varvec{X}},{\varvec{U}}_{V2} } \right), \ldots ,g_{j} \left( {{\varvec{X}},{\varvec{U}}_{{V2^{q} }} } \right)} \right\} \hfill \\ g_{j}^{{\text{R}}} \left( {{\varvec{X}},{\varvec{U}}} \right) = \max \left\{ {g_{j} \left( {{\varvec{X}},{\varvec{U}}_{V1} } \right),g_{j} \left( {{\varvec{X}},{\varvec{U}}_{V2} } \right), \ldots ,g_{j} \left( {{\varvec{X}},{\varvec{U}}_{{V2^{q} }} } \right)} \right\} \hfill \\ \end{gathered}$$
(41)

Clearly, \({\varvec{U}}_{V1} ,{\varvec{U}}_{V2} , \ldots ,\user2{U}_{{V2^{q} }}\) means that 2q vertexes require to compute when there are q uncertain parameters. The calculation cost of VM-based IUO will be extremely expensive for the uncertain optimization with multiple uncertain parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Li, F. An adaptive bivariate decomposition method for interval optimization problems with multiple uncertain parameters. Engineering with Computers 39, 1981–1999 (2023). https://doi.org/10.1007/s00366-021-01589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01589-z

Keywords

Navigation