Skip to main content
Log in

Analyzing three-dimensional wave propagation with the hybrid reproducing kernel particle method based on the dimension splitting method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

By introducing the dimension splitting method into the reproducing kernel particle method (RKPM), a hybrid reproducing kernel particle method (HRKPM) for solving three-dimensional (3D) wave propagation problems is presented in this paper. Compared with the RKPM of 3D problems, the HRKPM needs only solving a set of two-dimensional (2D) problems in some subdomains, rather than solving a 3D problem in the 3D problem domain. The shape functions of 2D problems are much simpler than those of 3D problems, which results in that the HRKPM can save the CPU time greatly. Four numerical examples are selected to verify the validity and advantages of the proposed method. In addition, the error analysis and convergence of the proposed method are investigated. From the numerical results we can know that the HRKPM has higher computational efficiency than the RKPM and the element-free Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kadalbajoo MK, Kumar A, Tripathi LP (2015) A radial basis functions based finite differences method for wave equation with an integral condition. Appl Math Comput 253:8–16

    MathSciNet  MATH  Google Scholar 

  2. Wang S, Virta K, Kreiss G (2016) High order finite difference methods for the wave equation with non-conforming grid interfaces. J Sci Comput 68(3):1002–1028

    Article  MathSciNet  MATH  Google Scholar 

  3. Dehghan M (2005) On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer Methods Partial Differ Equ 21:24–40

    Article  MathSciNet  MATH  Google Scholar 

  4. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30

    Article  MathSciNet  MATH  Google Scholar 

  5. Ainsworth M, Monk P, Muniz W (2006) Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J Sci Comput 27(1–3):5–40

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen X, Birk C, Song C (2015) Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method. Comput Geotech 63:1–12

    Article  Google Scholar 

  7. Huang R, Zheng SJ, Liu ZS, Ng TY (2020) Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers. Int J Appl Mech 12(2):2050014

    Article  Google Scholar 

  8. Cheng YM (2015) Meshless methods. Science Press, Beijing

    MATH  Google Scholar 

  9. Cheng YM, Wang WQ, Peng MJ, Zhang Z (2014) Mathematical aspects of meshless methods. Math Probl Eng 2014:756297

    Article  Google Scholar 

  10. Salehi R, Dehghan M (2013) A generalized moving least square reproducing kernel method. J Comput Appl Math 249:120–132

    Article  MathSciNet  MATH  Google Scholar 

  11. Abbaszadeh M, Dehghan M (2019) The reproducing kernel particle Petrov–Galerkin method for solving two-dimensional non-stationary incompressible Boussinesq equations. Eng Anal Bound Elem 106:300–308

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu FB, Cheng YM (2018) The improved element-free Galerkin method based on the nonsingular weight functions for elastic large deformation problems. Int J Comput Mater Sci Eng 7(3):1850023

    MathSciNet  Google Scholar 

  13. Liu FB, Wu Q, Cheng YM (2019) A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems. Int J Appl Mech 11(1):1950006

    Article  Google Scholar 

  14. Dehghan M, Narimani N (2018) An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue. Appl Math Model 59:500–513

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan M, Narimani N (2020) The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model. Eng Comput 36(4):1517–1537

    Article  Google Scholar 

  16. Qin XQ, Duan XB, Hu G, Su LJ, Wang X (2018) An Element-free Galerkin method for solving the two-dimensional hyperbolic problem. Appl Math Comput 321:106–120

    MathSciNet  MATH  Google Scholar 

  17. Cheng RJ, Ge HX (2012) Meshless method for a kind of three-dimensional hyperbolic equation. Appl Mech Mater 101–102:1126–1129

    Google Scholar 

  18. Cheng RJ, Ge HX (2009) Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation. Chin Phys B 18:4059–4064

    Article  Google Scholar 

  19. Zhang Z, Li DM, Cheng YM, Liew KM (2012) The improved element-free Galerkin method for three-dimensional wave equation. Acta Mech Sin 28(3):808–818

    Article  MathSciNet  MATH  Google Scholar 

  20. Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    Article  MathSciNet  MATH  Google Scholar 

  21. Shivanian E, Shaban M (2019) An improved pseudospectral meshless radial point interpolation (PSMRPI) method for 3D wave equation with variable coefficients. Eng Comput 35(4):1159–1171

    Article  Google Scholar 

  22. Liew KM, Cheng RJ (2013) Numerical study of the three-dimensional wave equation using the mesh-free kp-Ritz method. Eng Anal Bound Elem 37:977–989

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehghan M, Salehi R (2012) A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation. Math Methods Appl Sci 35:1120–1233

    Article  MathSciNet  MATH  Google Scholar 

  24. Dehghan M, Salehi R (2012) A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation. Appl Math Model 36:1939–1956

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  26. Cheng RJ, Ge HX (2010) Meshless analysis of three-dimensional steady-state heat conduction problems. Chin Phys B 19(9):090201

    Article  Google Scholar 

  27. Cheng RJ, Liew KM (2012) A meshless analysis of three-dimensional transient heat conduction problems. Eng Anal Bound Elem 36:203–210

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma JC, Gao HF, Wei GF, Qiao JW (2020) The meshless analysis of wave propagation based on the Hermit-type RRKPM. Soil Dyn Earthq Eng 134:106154

    Article  Google Scholar 

  29. Dehghan M, Abbaszadeh M (2017) A local meshless method for solving multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems arising in plasma physics. Eng Comput 33(4):961–981

    Article  Google Scholar 

  30. Dehghan M, Abbaszadeh M (2017) Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput Math Appl 73(6):1270–1285

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng J (2020) Analyzing the factors influencing the choice of the government on leasing different types of land uses: evidence from Shanghai of China. Land Use Policy 90:104303

    Article  Google Scholar 

  32. Cheng J (2020) Data analysis of the factors influencing the industrial land leasing in Shanghai based on mathematical models. Math Probl Eng 2020:9346863

    Article  Google Scholar 

  33. Chen L, Cheng YM (2010) The complex variable reproducing kernel particle method for elasto-plasticity problems. Sci China Phys Mech Astron 53(5):954–965

    Article  Google Scholar 

  34. Chen L, Ma HP, Cheng YM (2013) Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems. Chin Phys B 22(5):050202

    Article  Google Scholar 

  35. Chen L, Cheng YM, Ma HP (2015) The complex variable reproducing kernel particle method for the analysis of Kirchhoff plates. Comput Mech 55(3):591–602

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen L, Cheng YM (2018) The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations. Comput Mech 62:67–80

    Article  MathSciNet  MATH  Google Scholar 

  37. Weng YJ, Zhang Z, Cheng YM (2014) The complex variable reproducing kernel particle method for two-dimensional inverse heat conduction problems. Eng Anal Bound Elem 44:36–44

    Article  MathSciNet  MATH  Google Scholar 

  38. Weng YJ, Cheng YM (2013) Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method. Chin Phys B 22(9):090204

    Article  Google Scholar 

  39. Li KT, Huang AX, Zhang WL (2002) A dimension split method for the 3D compressible Navier Stokes equations in turbomachine. Commun Numer Methods Eng 18:1–14

    Article  MATH  Google Scholar 

  40. Li KT, Liu DM (2009) Dimension splitting method for 3D rotating compressible Navier–Stokes equations in the turbomachinery. Int J Numer Anal Model 6:420–439

    MathSciNet  MATH  Google Scholar 

  41. Li KT, Shen XQ (2007) A dimensional splitting method for the linearly elastic shell. Int J Comput Math 84(6):807–824

    Article  MathSciNet  MATH  Google Scholar 

  42. Bragin MD, Rogov BV (2016) On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law. Dokl Math 94:382–386

    Article  MathSciNet  MATH  Google Scholar 

  43. Cheng H, Peng MJ, Cheng YM (2017) A fast complex variable element-free Galerkin method for three-dimensional wave propagation problems. Int J Appl Math 9(6):1750090

    Google Scholar 

  44. Cheng H, Peng MJ, Cheng YM (2017) A hybrid improved complex variable element-free Galerkin method for three-dimensional potential problems. Eng Anal Bound Elem 84:52–62

    Article  MathSciNet  MATH  Google Scholar 

  45. Cheng H, Peng MJ, Cheng YM (2018) The dimension splitting and improved complex variable element-free Galerkin method for 3-dimensional transient heat conduction problems. Int J Numer Methods Eng 114:321–345

    Article  MathSciNet  Google Scholar 

  46. Cheng H, Peng MJ, Cheng YM (2018) A hybrid improved complex variable element-free Galerkin method for three-dimensional advection–diffusion problems. Eng Anal Bound Elem 97:39–54

    Article  MathSciNet  Google Scholar 

  47. Cheng H, Peng MJ, Cheng YM (2020) A hybrid complex variable element-free Galerkin method for 3D elasticity problems. Eng Struct 219:110835

    Article  Google Scholar 

  48. Meng ZJ, Cheng H, Ma LD, Cheng YM (2018) The dimension split element-free Galerkin method for three-dimensional potential problems. Acta Mech Sin 34(3):462–474

    Article  MathSciNet  MATH  Google Scholar 

  49. Meng ZJ, Cheng H, Ma LD, Cheng YM (2019) The dimension splitting elementfree Galerkin method for 3D transient heat conduction problems. Sci China Phys Mech Astron 62(4):040711

    Article  Google Scholar 

  50. Meng ZJ, Cheng H, Ma LD, Cheng YM (2019) The hybrid element-free Galerkin method for three-dimensional wave propagation problems. Int J Numer Methods Eng 117:15–37

    Article  MathSciNet  Google Scholar 

  51. Peng PP, Wu Q, Cheng YM (2020) The dimension splitting reproducing kernel particle method for three-dimensional potential problems. Int J Numer Methods Eng 121:146–164

    Article  MathSciNet  Google Scholar 

  52. Fang DY (2008) Nonlinear wave equation. Zhejiang University Press, Zhejiang

    Google Scholar 

  53. Li XL, Li SL (2016) On the stability of the moving least squares approximation and the element-free Galerkin method. Comput Math Appl 72:1515–1531

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 11571223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Cheng, Y. Analyzing three-dimensional wave propagation with the hybrid reproducing kernel particle method based on the dimension splitting method. Engineering with Computers 38 (Suppl 2), 1131–1147 (2022). https://doi.org/10.1007/s00366-020-01256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01256-9

Keywords

Navigation