Skip to main content
Log in

An effective method for solving nonlinear fractional differential equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A new technique based on beta functions is applied to compute the exact formula for the Riemann–Liouville fractional integral of the fractional-order generalized Chelyshkov wavelets. An approximation method based on the wavelets is proposed to effectively solve nonlinear fractional differential equations. Illustrative examples show that the proposed method gives solutions with less errors in comparison with the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Machado T, Kiryakova V, Mainardi F (2010) A poster about the recent history of fractional calculus. Fract Calc Appl Anal 13(3):329p–334

    MathSciNet  MATH  Google Scholar 

  2. Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    MathSciNet  MATH  Google Scholar 

  3. Machado JT, Galhano AM, Trujillo JJ (2013) Science metrics on fractional calculus development since 1966. Fract Calc Appl Anal 16(2):479–500

    MathSciNet  MATH  Google Scholar 

  4. Machado JAT, Galhano AMSF, Trujillo JJ (2014) On development of fractional calculus during the last fifty years. Scientometrics 98(1):577–582

    Google Scholar 

  5. Kim M (2006) Fractional differential equations and applications. Kim Il Sung University Press, Juche

    Google Scholar 

  6. Rudolf H (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Google Scholar 

  7. Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer Science & Business Media, Berlin

    Google Scholar 

  8. Odzijewicz T, Malinowska AB, Torres DFM (2012) Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr Appl Anal 2012:1–24

    MathSciNet  MATH  Google Scholar 

  9. Singh J, Kumar D, Baleanu D (2017) On the analysis of chemical kinetics system pertaining to a fractional derivative with mittag-leffler type kernel. Chaos Interdiscipl J Nonlinear Sci 27(10):103113

    MathSciNet  MATH  Google Scholar 

  10. Hu Y, Øksendal B (2003) Fractional white noise calculus and applications to finance. Infinite Dimension Anal Quant Prob Relat Top 6(01):1–32

    MathSciNet  MATH  Google Scholar 

  11. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    MathSciNet  MATH  Google Scholar 

  12. Li B, Xie W (2015) Adaptive fractional differential approach and its application to medical image enhancement. Comput Elect Engine 45:324–335

    Google Scholar 

  13. Tricaud C, Chen YQ (2009) Time-optimal control of fractional dynamic systems. In: Joint 48th IEEE conference on decision and control and 28th Chinese control conference, Shanghai, PR China, pp 5027–5032. Piscataway, NJ: IEEE

  14. Agrawal OP, Defterli O, Baleanu D (2010) Fractional optimal control problems with several state and control variables. J Vibr Control 16(13):1967–1976

    MathSciNet  MATH  Google Scholar 

  15. Razzaghi M, Yousefi S (2001) The legendre wavelets operational matrix of integration. Int J Syst Sci 32(4):495–502

    MathSciNet  MATH  Google Scholar 

  16. Chang P, Isah A (2016) Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation and its applications in solving fractional order brusselator system. J Phys Conf Ser 693:012001

    MATH  Google Scholar 

  17. Babolian E, Fattahzadeh F (2007) Numerical solution of differential equations by using chebyshev wavelet operational matrix of integration. Appl Math Comput 188(1):417–426

    MathSciNet  MATH  Google Scholar 

  18. Danfu H, Xufeng S (2007) Numerical solution of integro-differential equations by using cas wavelet operational matrix of integration. Appl Math Comput 194(2):460–466

    MathSciNet  MATH  Google Scholar 

  19. Li Y, Weiwei Zhao W (2010) Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl Math Comput 216(8):2276–2285

    MathSciNet  MATH  Google Scholar 

  20. Rahimkhani P, Ordokhani Y, Lima PM (2019) An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Appl Numer Math 145:1–27

    MathSciNet  MATH  Google Scholar 

  21. Oguz C, Sezer M (2015) Chelyshkov collocation method for a class of mixed functional integro-differential equations. Appl Math Comput 259:943–954

    MathSciNet  MATH  Google Scholar 

  22. Moradi L, Mohammadi F, Baleanu D (2019) A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets. J Vib Control 25(2):310–324

    MathSciNet  Google Scholar 

  23. Mashayekhi S, Razzaghi M (2016) Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation. Math Method Appl Sci 39(3):353–365

    MathSciNet  MATH  Google Scholar 

  24. Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J Comput Phys 2016:315

    MathSciNet  MATH  Google Scholar 

  25. Toan PT, Vo TN, Razzaghi M (2019) Taylor wavelet method for fractional delay differential equations. Eng Comput 2019:1–10

    Google Scholar 

  26. Vichitkunakorn P, Vo TN, Razzaghi M (2020) A numerical method for fractional pantograph differential equations based on Taylor wavelets. T I Meas Control 42:1334–1344

    Google Scholar 

  27. Mohammadi F, Cattani C (2018) A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J Comput Appl Math 339:306–316

    MathSciNet  MATH  Google Scholar 

  28. Ghoreishi F, Yazdani S (2011) An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput Math Appl 61:30–43

    MathSciNet  MATH  Google Scholar 

  29. Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37(7):5498–5510

    MathSciNet  MATH  Google Scholar 

  30. Rahimkhani P, Ordokhani Y (2020) Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. J Comput Appl Math 365:112365

    MathSciNet  MATH  Google Scholar 

  31. Bhrawy A, Alhamed Y, Baleanu D, Al-Zahrani A (2014) New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract Calc Appl Anal 17(4):1137–1157

    MathSciNet  MATH  Google Scholar 

  32. Rahimkhani P, Ordokhani Y, Babolian Y (2016) Fractional-order Bernoulli wavelets and their applications. Appl Math Model 40:8087–8107

    MathSciNet  MATH  Google Scholar 

  33. Rahimkhani P, Ordokhani Y, Babolian E (2016) An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn 86:1649–1661

    MathSciNet  MATH  Google Scholar 

  34. Rahimkhani P, Ordokhani Y, Babolian E (2017) Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J Comput Appl Math 309:493–510

    MathSciNet  MATH  Google Scholar 

  35. Mohammadi F, Cattani C (2018) A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J Comput Appl Math 339:306–316

    MathSciNet  MATH  Google Scholar 

  36. Jibenja N, Yuttanan B, Razzaghi M (2018) An efficient method for numerical solutions of distributed-order fractional differential equations. J Comput Nonlinear Dyn 13(11):111003

    Google Scholar 

  37. Saeed U, ur Rehman M, Iqbal MA (2015) Modified chebyshev wavelet methods for fractional delay-type equations. Appl Math Comput 264:431–442

    MathSciNet  MATH  Google Scholar 

  38. Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  39. Chelyshkov VS (2006) Alternative orthogonal polynomials and quadratures. Elect Trans Numer Analy 25(7):17–26

    MathSciNet  MATH  Google Scholar 

  40. Mohammadi F (2018) Numerical solution of systems of fractional delay differential equations using a new kind of wavelet basis. Comput Appl Math 37(4):4122–4144

    MathSciNet  MATH  Google Scholar 

  41. Didonato A (2005) An inverse of the incomplete beta function (f-(variance ratio) distribution function). In: Technical report, Naval surface wafare center dahlgren div va

  42. Robert J, Boik RJ, Robison-Cox JF (1998) Derivatives of the incomplete beta function. J Stat Softw 3(1):1–20

    Google Scholar 

  43. Levy D (2010) Introduction to numerical analysis. In: Depart Math Center Science Computer Math Model (CSCAMM)—University of Maryland

  44. Rani D, Mishra V, Cattani C (2019) Numerical inverse laplace transform for solving a class of fractional differential equations. Symmetry 11(4):530

    MATH  Google Scholar 

  45. Meng Z, Yi M, Huang J, Song L (2018) Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials. Appl Math Comput 336:454–464

    MathSciNet  MATH  Google Scholar 

  46. Yüzbaşi Ş (2013) Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl Math Comput 219(11):6328–6343

    MathSciNet  MATH  Google Scholar 

  47. Saeed U (2017) CAS Picard method for fractional nonlinear differential equation. Appl Math Comput 307:102–112

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the anonymous referee for valuable suggestions that improved the final version manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Razzaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, H.T.B., Vo, T.N. & Razzaghi, M. An effective method for solving nonlinear fractional differential equations. Engineering with Computers 38 (Suppl 1), 207–218 (2022). https://doi.org/10.1007/s00366-020-01143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01143-3

Keywords

Navigation