Skip to main content
Log in

An effective optimization-based parameterized interval analysis approach for static structural response with multiple uncertain parameters

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The framework of parameterized interval analysis (PIA) and optimization and anti-optimization problems (OAP) was recently proposed for considerably reducing or eliminating the overestimation of the interval solution arising in the classical interval analysis. However, reducing the computational effort of this framework still remains a challenging task, especially for large-scale structures with a large number of uncertain parameters. In this regard, an effective approach formulated in the framework is proposed for evaluating the static structural response with multiple uncertain-but-bounded parameters. First, the PIA is used to describe uncertain input properties incorporated into the interval stiffness matrix and the interval load vector of finite element model. Subsequently, the parametric inverse of the stiffness matrix is handled using a Neumann series expansion. To efficiently solve the objective function of OAP, a robust optimization solver known as lightning attachment procedure optimization algorithm is applied in the field of IFEM for the first time. Finally, the numerical investigations on three kinds of structures concerning truss, frame and plate structures with multiple uncertain parameters are presented to demonstrate the accuracy and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghasemi H, Rafiee R, Zhuang X et al (2014) Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Comput Mater Sci 85:295–305. https://doi.org/10.1016/j.commatsci.2014.01.020

    Article  Google Scholar 

  2. Ghasemi H, Brighenti R, Zhuang X et al (2015) Optimal fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Struct Multidiscip Optim 51:99–112. https://doi.org/10.1007/s00158-014-1114-y

    Article  MathSciNet  Google Scholar 

  3. Vu-Bac N, Lahmer T, Zhuang X et al (2016) A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 100:19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005

    Article  Google Scholar 

  4. Hamdia KM, Ghasemi H, Zhuang X et al (2018) Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput Methods Appl Mech Eng 337:95–109. https://doi.org/10.1016/j.cma.2018.03.016

    Article  MathSciNet  MATH  Google Scholar 

  5. Faes M, Moens D (2019) Recent trends in the modeling and quantification of non-probabilistic uncertainty. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09327-x

    Article  MATH  Google Scholar 

  6. Hamdia KM, Silani M, Zhuang X et al (2017) Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int J Fract 206:215–227. https://doi.org/10.1007/s10704-017-0210-6

    Article  Google Scholar 

  7. Lallemand B (1999) Fuzzy modal finite element analysis of structures with imprecise material properties. J Sound Vib 220:353–365. https://doi.org/10.1006/jsvi.1998.1952

    Article  Google Scholar 

  8. Rao MVR, Reddy RR (2006) Fuzzy finite element analysis of structures with uncertainty in load and material properties. J Struct Eng 33:129–137

    Google Scholar 

  9. Bai YC, Jiang C, Han X, Hu DA (2013) Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties. Finite Elem Anal Des 68:52–62. https://doi.org/10.1016/j.finel.2013.01.007

    Article  Google Scholar 

  10. Jiang C, Zhang Z, Han X, Liu J (2013) A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty. Comput Struct 129:1–12. https://doi.org/10.1016/j.compstruc.2013.08.007

    Article  Google Scholar 

  11. Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. SIAM

  12. Alefeld G, Mayer G (2000) Interval analysis: theory and applications. J Comput Appl Math 121:421–464

    Article  MathSciNet  Google Scholar 

  13. Moens D, Vandepitte D (2005) A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput Methods Appl Mech Eng 194:1527–1555. https://doi.org/10.1016/j.cma.2004.03.019

    Article  MATH  Google Scholar 

  14. Dimarogonas AD (1995) Interval analysis of vibrating systems. J Sound Vib 183:739–749. https://doi.org/10.1006/jsvi.1995.0283

    Article  MATH  Google Scholar 

  15. Köylüoğlu HU, Çahmak AŞ, Nielsen SRK (1995) Interval algebra to deal with pattern loading and structural uncertainties. J Eng Mech ASCE 121:1149–1157. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:11(1149)

    Article  Google Scholar 

  16. Rao SS, Berke L (1997) Analysis of uncertain structural systems using interval analysis. AIAA J 35:727–735. https://doi.org/10.2514/2.164

    Article  MATH  Google Scholar 

  17. Moens D, Hanss M (2011) Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem Anal Des 47:4–16. https://doi.org/10.1016/j.finel.2010.07.010

    Article  Google Scholar 

  18. Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  19. Chen S-H, Yang X-W (2000) Interval finite element method for beam structures. Finite Elem Anal Des 34:75–88

    Article  Google Scholar 

  20. Degrauwe D, Lombaert G, De Roeck G (2010) Improving interval analysis in finite element calculations by means of affine arithmetic. Comput Struct 88:247–254. https://doi.org/10.1016/j.compstruc.2009.11.003

    Article  Google Scholar 

  21. Muscolino G, Sofi A (2012) Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab Eng Mech 28:152–163. https://doi.org/10.1016/j.probengmech.2011.08.011

    Article  Google Scholar 

  22. Jiang C, Fu CM, Ni BY, Han X (2016) Interval arithmetic operations for uncertainty analysis with correlated interval variables. Acta Mech Sin Xuebao 32:743–752. https://doi.org/10.1007/s10409-015-0525-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Elishakoff I, Miglis Y (2012) Novel parameterized intervals may lead to sharp bounds. Mech Res Commun 44:1–8. https://doi.org/10.1016/j.mechrescom.2012.04.004

    Article  Google Scholar 

  24. Elishakoff I (2013) Whys and hows of the parameterized interval analyses: a guide for the perplexed. Int J Comput Methods Eng Sci Mech 14:495–504. https://doi.org/10.1080/15502287.2013.807092

    Article  MathSciNet  Google Scholar 

  25. Muhanna RL, Mullen RL (2001) Uncertainty in mechanics problems—interval–based approach. J Eng Mech 127:557–566. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557)

    Article  Google Scholar 

  26. Muhanna RL, Zhang H, Mullen RL (2007) Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliab Comput 13:173–194. https://doi.org/10.1007/s11155-006-9024-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Muhanna RL, Mullen RL, Rao MVR (2015) Nonlinear finite element analysis of frames under interval material and load uncertainty. ASCE ASME J Risk Uncertain Eng Syst Part B Mech Eng 1:41003. https://doi.org/10.1115/1.4030609

    Article  Google Scholar 

  28. Rao MVR, Muhanna RL, Mullen RL (2016) Interval finite element analysis of thin plates. Proc NSF Work Reliab Eng Comput:111–130

  29. Impollonia N, Muscolino G (2011) Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput Methods Appl Mech Eng 200:1945–1962. https://doi.org/10.1016/j.cma.2010.07.019

    Article  MATH  Google Scholar 

  30. Yang H, Li Y, Xue Y (2015) Interval uncertainty analysis of elastic bimodular truss structures. Inverse Probl Sci Eng 23:578–589. https://doi.org/10.1080/17415977.2014.922078

    Article  Google Scholar 

  31. Sofi A, Muscolino G (2015) Static analysis of Euler–Bernoulli beams with interval Young’s modulus. Comput Struct 156:72–82. https://doi.org/10.1016/j.compstruc.2015.04.002

    Article  Google Scholar 

  32. Sofi A, Romeo E (2016) A novel interval finite element method based on the improved interval analysis. Comput Methods Appl Mech Eng 311:671–697. https://doi.org/10.1016/j.cma.2016.09.009

    Article  MathSciNet  MATH  Google Scholar 

  33. Santoro R, Muscolino G, Elishakoff I (2015) Optimization and anti-optimization solution of combined parameterized and improved interval analyses for structures with uncertainties. Comput Struct 149:31–42. https://doi.org/10.1016/j.compstruc.2014.11.006

    Article  Google Scholar 

  34. Meyer CD (2001) Matrix analysis and applied linear algebra. SIAM

  35. Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl Soft Comput 59:596–621. https://doi.org/10.1016/j.asoc.2017.06.033

    Article  Google Scholar 

  36. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  37. Yang X-S, Deb S (2009) Cuckoo search via Levy flights. World Congr Nat Biol Inspired Comput. https://doi.org/10.1109/nabic.2009.5393690

    Article  Google Scholar 

  38. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  39. Thakur N, Keane AJ, Nair PB (2010) Estimating the effect of manufacturing variability on turbine blade life. In: 4th Int Work Reliab Eng Comput (REC 2010), pp 978–981. https://doi.org/10.3850/978-981-08-5118-7

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2017.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nguyen-Thoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh-Cong, D., Van Hoa, N. & Nguyen-Thoi, T. An effective optimization-based parameterized interval analysis approach for static structural response with multiple uncertain parameters. Engineering with Computers 36, 1889–1902 (2020). https://doi.org/10.1007/s00366-019-00803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00803-3

Keywords

Navigation