Skip to main content
Log in

Applications of the Lipschitz Summation Formula and a Generalization of Raabe’s Cosine Transform

  • Published:
Constructive Approximation Aims and scope

Abstract

General summation formulas have been proved to be very useful in analysis, number theory and other branches of mathematics. The Lipschitz summation formula is one of them. In this paper, we give its application by providing a new transformation formula which generalizes that of Ramanujan. Ramanujan’s result, in turn, is a generalization of the modular transformation of Eisenstein series \(E_k(z)\) on SL\(_2({\mathbb {Z}})\), where \(z\rightarrow -1/z, z\in {\mathbb {H}}\). The proof of our result involves delicate analysis containing Cauchy Principal Value integrals. A simpler proof of a recent result of ours with Kesarwani giving a non-modular transformation for \(\sum _{n=1}^{\infty }\sigma _{2m}(n)e^{-ny}\) is also derived using the Lipschitz summation formula. In the pursuit of obtaining this transformation, we naturally encounter a new generalization of Raabe’s cosine transform whose several properties are also demonstrated. As an application of our results, we get a generalization of Wright’s asymptotic estimate for the generating function of the number of plane partitions of a positive integer n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Ramanujan’s formula is actually valid for any complex \(\alpha , \beta \) such that \(Re (\alpha )>0, Re (\beta )>0\) and \(\alpha \beta =\pi ^2\).

  2. The case \(a=0\) of (3.16) reduces to a result of Kuylenstierna [32, Equation (7)].

  3. Note that one has to justify the interchange of the order of the integrals in third step of [39, p. 83] to use Parseval’s formula. The conditions under which it can be done are given after [39, p. 83, Equation (3.1.11)]. But one of our integrals is a principal value integral, therefore, we need to justify this interchange of the order of the integration.

References

  1. Andrews, G.E.: The Theory of Partitions, Addison-Wesley, New York, Reissued, p. 1998. Cambridge University Press, New York (1976)

    Google Scholar 

  2. Banerjee, S., Dixit, A., Gupta, S.: Lambert series of logarithm, the derivative of Deninger’s function \(R(z)\) and a mean value theorem for \(\zeta (1/2-it)\zeta ^{\prime }(1/2+it)\). Canad. J. Math. (to appear)

  3. Berndt, B.C.: On Eisenstein series with characters and the values of Dirichlet \(L\)-series. Acta Arith. 28, 299–320 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1989)

    Book  MATH  Google Scholar 

  5. Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York (1998)

    Book  MATH  Google Scholar 

  6. Berndt, B.C., Straub, A.: Ramanujan’s Formula for \(\zeta (2n+1)\). Exploring the Riemann zeta Function, pp. 13–34. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  7. Berndt, B.C., Dixit, A., Gupta, R., Zaharescu, A.: Ramanujan and Koshliakov meet Abel and Plana. In: Balasubramanyam, B., Sinha, K., Vidyasagar, M. (eds.) Some contributions to number theory and beyond: Proceedings of the centenary symposium for M V Subbarao, Fields Institute Communications (to appear)

  8. Berndt, B.C., Dixit, A., Roy, A., Zaharescu, A.: New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan. Adv. Math. 304, 809–929 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berndt, B.C., Rankin, R.A.: Ramanujan, Essays and Surveys, American Mathematical Society, Providence, RI, 2001. London Mathematical Society, London (2001)

    Google Scholar 

  10. Bradley, D.M.: Series acceleration formulas for Dirichlet series with periodic coefficients. Ramanujan J. 6, 331–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Copson, E.T.: Theory of Functions of a Complex Variable. Oxford University Press, Oxford (1935)

    MATH  Google Scholar 

  12. Dai, H.H., Naylor, D.: On an asymptotic expansion of Fourier integrals. Proc. R. Soc. Lond. Ser. A 436(1896), 109–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dixit, A., Gupta, R.: Koshliakov zeta functions I. Modular relations. Adv. Math. 393, 108093 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dixit, A., Gupta, R., Kumar, R., Maji, B.: Generalized Lambert series, Raabe’s cosine transform and a generalization of Ramanujan’s formula for \(\zeta (2m+1)\). Nagoya Math. J. 239, 232–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dixit, A., Gupta, R., Kumar, R.: Extended higher Herglotz functions I. Functional equations. Adv. Appl. Math. 153, 102622 (2024)

  16. Dixit, A., Kesarwani, A., Kumar, R.: Explicit transformations of certain Lambert series. Res. Math. Sci. 9, 34 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dixit, A., Maji, B.: Generalized Lambert series and arithmetic nature of odd zeta values. Proc. R. Soc. Edinb. Sect. A: Math. 150(2), 741–769 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions (Bateman Manuscript Project), vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  19. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions (Bateman Manuscript Project), vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  20. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms (Bateman Manuscript Project), vol. II. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  21. Glaisher, J.W.L.: On the series which represent the twelve elliptic and the four zeta functions. Mess. Math. 18, 1–84 (1889)

    Google Scholar 

  22. Gradshteyn, I.S., Ryzhik, I.M. (eds.): Table of Integrals, Series, and Products, 7th edn. Academic Press, San Diego (2007)

    MATH  Google Scholar 

  23. Guinand, A.P.: On Poisson’s summation formula. Ann. Math. (2) 42, 591–603 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guinand, A.P.: Functional equations and self-reciprocal functions connected with Lambert series. Quart. J. Math. 15, 11–23 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gupta, A., Maji, B.: On Ramanujan’s formula for \(\zeta (1/2)\) and \(\zeta (2m+1)\). J. Math. Anal. Appl. 507, 125738 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hardy, G.H.: The elementary theory of Cauchy’s principal values. Proc. Lond. Math. Soc. (1) 34, 16–40 (1902)

    MathSciNet  Google Scholar 

  27. Hardy, G.H.: The theory of Cauchy’s principal values. (Second Paper: the use of principal values in some of the double limit problems of the integral calculus). Proc. Lond. Math. Soc. (1) 34, 55–91 (1902)

    MathSciNet  MATH  Google Scholar 

  28. Hardy, G.H.: The theory of Cauchy’s principal values. (Third Paper: Differentiation and Integration of Principal Values). Proc. London Math. Soc. (1) 35, 81–107 (1903)

    MathSciNet  MATH  Google Scholar 

  29. Kim, S.K.: The asymptotic expansion of a hypergeometric function \({}_2F_2(1, \alpha ; \rho _1, \rho _2; z)\). Math. Comput. 26(120) (1972)

  30. Knopp, M., Robins, S.: Easy proofs of Riemann’s functional equation for \(\zeta (s)\) and of Lipschitz summation. Proc. Am. Math. Soc. 129(7), 1915–1922 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Komori, Y., Matsumoto, K., Tsumura, H.: Barnes multiple zeta-functions, Ramanujan’s formula, and relevant series involving hyperbolic functions. J. Ramanujan Math. Soc. 28(1), 49–69 (2013)

    MathSciNet  MATH  Google Scholar 

  32. N. Kuylenstierna, La fonction zéta double et une équation fonctionnelle asymptotique de M. Wigert, Ark. för Mat., Astron. och Fys. 14, No. 24 (1920)

  33. Lipschitz, R.: Untersuchung der Eigenschaften einer Gattung von undendlichen Reihen. J. Reine Angew. Math. 127–156 (1889)

  34. Luke, Y.L.: The Special Functions and Their Approximations, UK edition, vol. 1. Academic Press, London (1969)

    Google Scholar 

  35. Malurkar, S.L.: On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16, 130–138 (1925/26)

  36. Oberhettinger, F.: Tables of Mellin Transforms. Springer, New York (1974)

    Book  MATH  Google Scholar 

  37. Olver, F.W.J.: Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5(1), 19–29 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  39. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals, Encyclopedia of Mathematics and its Applications, vol. 85. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  40. Pasles, P., Pribitkin, W.: A generalization of the Lipschitz summation formula and some applications. Proc. Am. Math. Soc. 129(11), 3177–3184 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. de Azevedo Pribitkin, W.: Laplace’s integral, the gamma function, and beyond. Am. Math. Mon. 109(3), 235–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. More Special Functions, vol. 3. Gordan and Breach, New York (1990)

    MATH  Google Scholar 

  43. Rademacher, H.: Topics in Analytic Number Theory. Springer, New York (1973)

    Book  MATH  Google Scholar 

  44. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)

    MATH  Google Scholar 

  45. Ramanujan, S.: Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957; 2nd edn (2012)

  46. Schlömilch, O.: Ueber einige unendliche Reihen, Berichte über die Verh. d. Könige Sächsischen Gesell. Wiss. zu Leipzig 29, 101–105 (1877)

  47. Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley-Interscience Publication, New York (1996)

    Book  MATH  Google Scholar 

  48. Vági, S.: On the summation formula of Lipschitz. Radovi Math. 4, 63–71 (1988)

    MathSciNet  MATH  Google Scholar 

  49. Watson, G.N.: Theorems stated by Ramanujan (IV): theorems on approximate integration and summation of series. J. Lond. Math. Soc. 3, 282–289 (1928)

  50. Wigert, S.: Sur une équation fonctionnelle asymptotique et ses conséquences arithmétiques. Arkiv Mat. Astron. Fys. 13, 16 (1919)

  51. Wright, E.M.: Asymptotic partition formula I. Plane partitions. Q. J. Math. 1, 177–189 (1931)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank referees for giving several important suggestions which enhanced the exposition of the paper. Further, they thank George E. Andrews for a helpful discussion on plane partitions. They would also like to thank Donghun Yu from POSTECH library for arranging references [26, 27, 50] for them. The first author’s research was partially supported by the Swarnajayanti Fellowship Grant SB/SJF/2021-22/08 of SERB (Govt. of India) and the CRG grant CRG/2020/002367 of SERB. The second author’s research was supported by the grant IBS-R003-D1 of the IBS-CGP, POSTECH, South Korea, and the Fulbright-Nehru Postdoctoral Fellowship Grant 2846/FNPDR/2022. Both the authors sincerely thank the respective funding agencies for their support. Part of this work was done when the second author was visiting IIT Gandhinagar in May 2022. He sincerely thanks IBS-CGP for the financial support and IIT Gandhinagar for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Dixit.

Additional information

Communicated by Edward B. Saff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Kumar, R. Applications of the Lipschitz Summation Formula and a Generalization of Raabe’s Cosine Transform. Constr Approx (2023). https://doi.org/10.1007/s00365-023-09668-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00365-023-09668-8

Keywords

Mathematics Subject Classification

Navigation