Skip to main content
Log in

Sampling Discretization of the Uniform Norm

  • Published:
Constructive Approximation Aims and scope

Abstract

Discretization of the uniform norm of functions from a given finite dimensional subspace of continuous functions is studied. We pay special attention to the case of trigonometric polynomials with frequencies from an arbitrary finite set with fixed cardinality. We give two different proofs of the fact that for any N-dimensional subspace of the space of continuous functions it is sufficient to use \(e^{CN}\) sample points for an accurate upper bound for the uniform norm. Previous known results show that one cannot improve on the exponential growth of the number of sampling points for a good discretization theorem in the uniform norm. Also, we prove a general result, which connects the upper bound on the number of sampling points in the discretization theorem for the uniform norm with the best m-term bilinear approximation of the Dirichlet kernel associated with the given subspace. We illustrate the application of our technique on the example of trigonometric polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batson, J., Spielman, D.A., Srivastava, N.: Twice-Ramanujan sparsifiers. SIAM Rev. 56, 315–334 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, S.N.: Sur une classe de formules d’interpolation. Izv. AN SSSR 9, 1151–1161 (1931)

    MATH  Google Scholar 

  3. Bernstein, S.N.: Sur une modification de la formule d’interpolation de Lagrange. Zapiski Khar’kovskogo matem. tovar. 5, 49–57 (1932)

    MATH  Google Scholar 

  4. Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162, 73–141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, A., Migliorati, G.: Optimal weighted least-squares methods. SMAI J. Comput. Math. 3, 181–203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, A., Dolbeault, M.: Optimal pointwise sampling for \(L^2\) approximation. J. Complex. 68, 101602 (2022)

  7. Dai, F., Prymak, A., Temlyakov, V.N., Tikhonov, S.U.: Integral norm discretization and related problems. Russ. Math. Surv. 74(4), 579–630 (2019). Translation from Uspekhi Mat. Nauk 74(4)(448), 3–58 (2019). arXiv:1807.01353v1

  8. Dai, F., Prymak, A., Shadrin, A., Temlyakov, V., Tikhonov, S.: Sampling discretization of integral norms. arXiv:2001.09320v1 [math.CA] 25 Jan 2020; Constructive Approximation. https://doi.org/10.1007/s00365-021-09539-0 (2021)

  9. Dai, F., Prymak, A., Shadrin, A., Temlyakov, V., Tikhonov, S.: Entropy numbers and Marcinkiewicz-type discretization theorem. arXiv:2001.10636v1 [math.CA] 28 Jan 2020; J. Funct. Anal. 281, 109090 (2021)

  10. Dai, F., Wang, H.: Positive cubature formulas and Marcinkiewicz–Zygmund inequalities on spherical caps. Constr. Approx. 31, 1–36 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figiel, T., Johnson, W.B., Schechtman, G.: Factorization of natural embeddings of \(\ell _p^n\) into \(L_r\), I. Stud. Math. 89, 79–103 (1988)

    Article  Google Scholar 

  12. Györfy, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  13. Gröchenig, K.: Sampling, Marcinkiewicz–Zygmund inequalities, approximation, and quadrature rules. J. Approx. Theory, 257 (2020)

  14. Johnson, W.B., Schechtman, G.: Finite Dimensional Subspaces of \(L_p\), Handbook of the Geometry of Banach Spaces, Vol. 1: 837–870. North-Holland, Amsterdam (2001)

  15. Kashin, B.S.: On certain properties of the space of trigonometric polynomials with the uniform norm, Trudy Mat. Inst. Steklov, 145: 111–116; English transl. Proc. Steklov Inst. Math. 145(1981), 121–127 (1980)

  16. Kashin, B.S., Saakyan, A.A.: Orthogonal Series. American Mathematical Society, Providence (1989)

    MATH  Google Scholar 

  17. Kashin, B.S., Temlyakov, V.N.: On a norm and related applications. Mat. Zametki 64, 637–640 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Kashin, B.S., Temlyakov, V.N.: On a norm and approximation characteristics of classes of functions of several variables, Metric theory of functions and related problems in analysi., Izd. Nauchno-Issled. Aktuarno-Finans. Tsentra (AFTs), Moscow, 69–99 (1999)

  19. Kashin, B.S., Temlyakov, V.N.: The volume estimates and their applications. East J. Approx. 9, 469–485 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Kashin, B.S., Temlyakov, V.N.: Observations on discretization of trigonometric polynomials with given spectrum. Russian Math. Surveys, 73:6 (2018), 1128–1130. Translation from Uspekhi Mat. Nauk 73:6, 197–198 (2018)

  21. Kashin, B., Kosov, E., Limonova, I., Temlyakov, V.: Sampling discretization and related problems. J. Complex. 71, 101653 (2022)

  22. Kämmerer, L., Ullrich, T., Volkmer, T.: Worst-case recovery guarantees for least squares approximation using random samples. Constr. Approx. 54, 295–352 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007). https://doi.org/10.1007/s00041-006-6915-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Kosov, E.: Marcinkiewicz-type discretization of \(L^p\)-norms under the Nikolskii-type inequality assumption. J. Math. Anal. Appl. 504, 125358 (2021)

  25. Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation. Found. Comp. Math. https://doi.org/10.1007/s10208-020-09481-warXiv:1905.02516v4 [math.NA] 19 Mar (2020)

  26. Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation: Part II, J. Complexity, https://doi.org/10.1016/j.jco.2021.101569arXiv:2011.01779v1 [math.NA] 3 Nov (2020)

  27. Limonova, I., Temlyakov, V.: On sampling discretization in \(L_2\). J. Math. Anal. Appl. 515, 126457 (2022)

  28. Marcus, A., Spielman, D.A., Srivastava, N.: Interlacing families II: mixed characteristic polynomials and the Kadison–Singer problem. Ann. Math. 182(1), 327–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagel, N., Schäfer, M., Ullrich, T.: A new upper bound for sampling numbers. Found. Comp. Math., Pub Date: 2021-04-26. https://doi.org/10.1007/s10208-021-09504-0. arXiv:2010.00327v1 [math.NA] 30 Sep (2020)

  30. Nitzan, S., Olevskii, A., Ulanovskii, A.: Exponential frames on unbounded sets. Proc. Am. Math. Soc. 144(1), 109–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  32. Pozharska, K., Ullrich, T.: A note on sampling recovery of multivariate functions in the uniform norm. arXiv:2103.11124v2 [math.NA] 2 Apr (2021)

  33. Temlyakov, V.N.: On approximate recovery of functions with bounded mixed derivative. J. Complex. 9, 41–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Temlyakov, V.N.: Greedy Approximation. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  35. Temlyakov, V.N., Tikhonov, S.: Remez-type and Nikol’skii-type inequalities: general relations and the hyperbolic cross polynomials. Constr. Appr. 46, 593–615 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Temlyakov, V.: Multivariate Approximation. Cambridge University Press, Cambridge (2018)

  37. Temlyakov, V.N.: The Marcinkewiecz-type discretization theorems for the hyperbolic cross polynomials. JAEN J. Approx. 9(1), 37–63 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Temlyakov, V.N.: The Marcinkiewicz-type discretization theorems. Constr. Approx. 48, 337–369 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Temlyakov, V.N.: On optimal recovery in \(L_2\). J. Complexity 65, 101545 (2021). https://doi.org/10.1016/j.jco.2020.101545

    Article  MATH  Google Scholar 

  40. Temlyakov, V.N., Ullrich, T.: Bounds on Kolmogorov widths of classes with small mixed smoothness, J. Complexity. Available online 4 May (2021), 101575. arXiv:2012.09925v1 [math.NA] 17 Dec (2020)

  41. Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959)

Download references

Acknowledgements

The authors are grateful to the referees for their useful comments and suggestions. The work was supported by the Russian Federation Government Grant No. 14.W03.31.0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Temlyakov.

Additional information

Communicated by Albert Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashin, B., Konyagin, S. & Temlyakov, V. Sampling Discretization of the Uniform Norm. Constr Approx 57, 663–694 (2023). https://doi.org/10.1007/s00365-023-09618-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-023-09618-4

Keywords

Navigation