Skip to main content
Log in

Christoffel Functions for Weights with Jumps

  • Published:
Constructive Approximation Aims and scope

Abstract

The asymptotic behavior of Christoffel functions is determined at points where the density of the corresponding measure has a jump discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this paper it will be \(\mathbb {R}\) but it could be \(\mathbb {C}\) or even a general abstract Hilbert space setting.

  2. However, A. Avila, Y. Last, and B. Simon’s 2010 paper [4] does have a.e.-type convergence theorems, see [4, Theorems 4, 5, p. 88].

  3. Following the tradition, if \(\mu \) is absolutely continuous with density (aka weight), say \(w\), then we write \(\lambda _n(w)\), \(p_n(w)\), and so forth. We will use Greek letters for measures and Latin ones for weights.

  4. When all energies are infinite, then the set \(S\) is called polar, and it does not have an equilibrium measure.

  5. Here and similarly below we use quotation marks to indicate that it is just an awkward way of forecasting that eventually we will take the infimum of some expression over all \(\eta >0\).

  6. \(\lfloor \cdot \rfloor \) denotes the mathematical integer part.

  7. As Walsh’s historical notes explain, it might be more appropriate to reference it as the Bernstein-M. Riesz-Walsh Lemma, see [25, p. 78]. For more unexpected revelations, see [13].

References

  1. Ancona, A.: Démonstration d’une conjecture sur la capacité et l’effilement. C. R. Acad. Sci. Paris 297, 393–395 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Ancona, A.: Sur une conjecture concernant la capacité et l’effilement, in Théorie du Potentiel. In: Proceedings of the Colloque Jacques Deny held at Orsay, June 20–23, 1983. Gabriel Mokobodzki and Didier Pinchon, editors, Lecture Notes in Mathematics, vol. 1096, pp. 34–68. Springer, New York (1984)

  3. Armitage, D.H., Gardiner, S.J.: Classical Potential Theory, Springer Monographs in Mathematics. Springer, London (2001)

    Book  Google Scholar 

  4. Avila, A., Last, Y., Simon, B.: Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with absolutely continuous spectrum. Anal. PDE 3, 81–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogatyrev, A.B.: Effective computation of Chebyshev polynomials for several intervals. Mat. Sb. 190(11), 15–50 (1999) in Russian, and Math. USSR Sb. 190, 1571–1605 (1999) in English

  6. DeVore, R.A., Lorentz, G.G.: Constructive Approximation, Grundlehren der mathematischen Wissenschaften, vol. 303. Springer, Berlin (1993)

    Google Scholar 

  7. Foulquié Moreno, A.P., Martínez-Finkelshtein, A., Sousa, V.L.: Asymptotics of orthogonal polynomials for a weight with a jump on \([-1,1]\). Constr. Approx. 33(2), 219–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garnett, J.B., Marshall, D.E.: Harmonic Measure, New Mathematical Monographs. Cambridge University Press, Cambridge, New York (2005)

    Book  Google Scholar 

  9. Kroó, A., Lubinsky, D.S.: Christoffel functions and universality in the bulk for multivariate orthogonal polynomials. Can. J. Math. 65(3), 600–620 (2013)

    Article  MATH  Google Scholar 

  10. McKean, H.P., van Moerbeke, P.: Hill and Toda curves. Commun. Pure Appl. Math. 33, 23–42 (1980)

    Article  MATH  Google Scholar 

  11. Nevai, P.: Orthogonal polynomials. Mem. Am. Math. Soc. 213, 1–185 (1979)

    MathSciNet  Google Scholar 

  12. Nevai, P.: Géza Freud, orthogonal polynomials, and Christoffel functions. A case study. J. Approx. Theory 48, 1–167 (1986)

    Article  MathSciNet  Google Scholar 

  13. Nevai, P.: The True Story of \(n\) vs. \(2n\) in the Bernstein Inequality, book in progress

  14. Nevai, P., Totik, V.: Christoffel functions (Letter to the Editor). Constr. Approx. (2014) to appear in the current issue

  15. Peherstorfer, F.: Deformation of minimizing polynomials and approximation of several intervals by an inverse polynomial mapping. J. Approx. Theory 111, 180–195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ransford, T.: Potential Theory in the Complex Plane, London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  17. Robinson, Raphael M.: Conjugate algebraic integers in real point sets. Math. Z. 84, 415–427 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simon, B.: The Christoffel–Darboux kernel. In: Mitrea, D., Mitrea, M. (eds.) Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday. Proceedings of Symposia in Pure Mathematics, vol. 79, pp. 295–355. American Mathematical Society, Providence, RI (2008)

  19. Stahl, H., Totik, V.: General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, vol. 43. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  20. Szegő, G.: Beiträge zur Theorie der Toeplitzschen Formen. Erste Mitt. Math. Z. 6(3–4), 167–202 (1920)

    Article  Google Scholar 

  21. Szegö, G.: Über die Entwicklung einer willkürlichen Funktion nach den Polynomen eines Orthogonalsystems. Math. Z. 12(1), 61–94 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  22. Totik, V.: Asymptotics for Christoffel functions for general measures on the real line. J. d’Analyise Math. 81, 283–303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Totik, V.: Universality and fine zero spacing on general sets. Arkiv för Math. 47, 361–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Totik, V.: The polynomial inverse image method. In: Neamtu, M., Schumaker, L. (eds.) Approximation Theory XIII: San Antonio 2010. Springer Proceedings in Mathematics, vol. 13, pp. 345–367. (2012)

  25. Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain, 3rd edn. American Mathematical Society Colloquium, Providence, RI (1960)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank our friend Andrei Martínez-Finkelshtein for double checking the computations in [7] so we could use (3) that not only played a critical role in our proof, but, in fact, the entire inspiration for this paper came from reading [7] and from trying to combine it with ideas found in [11] to extend (3) to more general weights and measures. As it turned out, the right approach required tools that were way beyond the machinery introduced and developed in [11]. We also thank the referees for their valuable suggestions. The research of Paul Nevai was supported by KAU grant No. 20-130/1433 HiCi. The research of Vilmos Totik was supported by NSF DMS-1265375

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Nevai.

Additional information

Communicated by Arno Kuijlaars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevai, P., Totik, V. Christoffel Functions for Weights with Jumps. Constr Approx 42, 265–280 (2015). https://doi.org/10.1007/s00365-014-9255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9255-1

Keywords

Mathematics Subject Classification

Navigation