Skip to main content
Log in

A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper studies factor modeling for a vector of time series with long-memory properties to investigate how outliers affect the identification of the number of factors and also proposes a robust method to reduce their impact. The number of factors is estimated using an eigenvalue analysis for a non-negative definite matrix introduced by Lam et al. (2011). Two estimators are proposed; the first is based on the classical sample covariance function, and the second uses a robust covariance function estimate. In both cases, it is shown that the eigenvalues estimates have similar convergence rates. Empirical simulations support both estimators for multivariate stationary long-memory time series and show that the robust method is preferable when the data is contaminated with additive outliers. Time series of daily log returns are used as an example of application. In addition to abrupt observations, exchange rates exhibit non-stationarity properties with long memory parameters greater than one. Then we use semi-parametric long memory estimators to estimate the fractional parameters of the series. The number of factors was estimated using the classical and robust approaches. Due to the influence of the abrupt observations, these tools suggested a different number of factors to model the data. The robust method suggested two factors, while the classical approach indicated only one factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arcones MA (1994) Limit theorems for nonlinear functionals of a stationary gaussian sequence of vectors. Ann Probab 22(4):2242–2274. https://doi.org/10.1214/aop/1176988503

    Article  MathSciNet  MATH  Google Scholar 

  • Bai J, Wang P (2016) Econometric analysis of large factor models. Annu Rev Econom 8(1):53–80

    Article  Google Scholar 

  • Bai X, Zheng L (2023) Robust factor models for high-dimensional time series and their forecasting. Commun Stat 52(19):1–14. https://doi.org/10.1080/03610926.2022.2033777

    Article  MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1981) Time series, data analysis and theory. Cambridge Series in Statistical and Probabilistic

  • Brockwell P, Davis R (2009) Time series: theory and methods. Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Chen EY, Tsay RS, Chen R (2020) Constrained factor models for high-dimensional matrix-variate time series. J Am Stat Assoc 115(530):775–793

    Article  MathSciNet  MATH  Google Scholar 

  • Christou E (2020) Robust dimension reduction using sliced inverse median regression. Stat Pap 61:1799–1818. https://doi.org/10.1007/s00362-018-1007-z

    Article  MathSciNet  MATH  Google Scholar 

  • Chung C (2002) Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processes. Econ Theory 18:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Cotta H, Reisen V, Bondon P, et al (2017) tsqn: applications of the qn estimator to time series (univariate and multivariate). https://CRAN.R-project.org/package=tsqn, r package version 1.0.0

  • Cotta H, Reisen VA, Bondon P (2023) A robust alternative method for the estimation of the covariance and the correlation matrices for multivariate time series. Unpublished. https://doi.org/10.13140/RG.2.2.24313.65129

  • Eichler M, Motta G, von Sachs R (2011) Fitting dynamic factor models to non-stationary time series. J Econometr 163(1):51–70

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Wang K, Zhong Y et al (2021) Robust high dimensional factor models with applications to statistical machine learning. Stat Sci 36(2):303–327

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández-Macho FJ (1997) A dynamic factor model for economic time series. Kybernetika 33(6):583–606

    MathSciNet  MATH  Google Scholar 

  • Geweke J (1977) The dynamic factor analysis of economic time series. In: Aigner DJ, Goldberger AS (eds) Latent variables in socio-economic models. North-Holland, Amsterdam, pp 365–383

    Google Scholar 

  • Geweke JF, Singleton KJ (1981) Latent variable models for time series: A frequency domain approach with an application to the permanent income hypothesis. J Econometr 17(3):287–304

    Article  MathSciNet  MATH  Google Scholar 

  • Hallin M, Liška R (2007) Determining the number of factors in the general dynamic factor model. J Am Stat Assoc 102(478):603–617

    Article  MathSciNet  MATH  Google Scholar 

  • He Y, Wang Y, Yu L et al (2022) Matrix kendall’s tau in high-dimensions: a robust statistic for matrix factor model

  • Lam C, Yao Q (2012) Factor modeling for high-dimensional time series: inference for the number of factors. Ann Stat 40(2):694–726. https://doi.org/10.1214/12-AOS970

    Article  MathSciNet  MATH  Google Scholar 

  • Lam C, Yao Q, Bathia N (2011) Estimation of latent factors for high-dimensional time series. Biometrika 98(4):901–918

    Article  MathSciNet  MATH  Google Scholar 

  • Lévy-Leduc C, Boistard H, Moulines E et al (2011a) Large sample behavior of some well-known robust estimators under long-range dependence. Statistics 45(1):59–71

  • Lévy-Leduc C, Boistard H, Moulines E et al (2011b) Robust estimation of the scale and of the autocovariance function of gaussian short-and long-range dependent processes. J Time Ser Anal 32(2):135–156

  • Lévy-Leduc C, Bondon P, Reisen VA (2022) Robust autocovariance estimation from the frequency domain for univariate stationary time series. J Stat Plan Inference 221:281–298

    Article  MATH  Google Scholar 

  • Lin TI, Chen IA, Wang WL (2022) A robust factor analysis model based on the canonical fundamental skew-t distribution. Stat Pap 1–27

  • Ma Y, Genton MG (2000) Highly robust estimation of the autocovariance function. J Time Ser Anal 21:663–684

    Article  MathSciNet  MATH  Google Scholar 

  • Molinares FF, Reisen VA, Cribari-Neto F (2009) Robust estimation in long-memory processes under additive outliers. J Stat Plan Inference 139(8):2511–2525

    Article  MathSciNet  MATH  Google Scholar 

  • Peña D, Box GEP (1987) Identifying a simplifying structure in time series. J Am Stat Assoc 82(399):836–843

    MathSciNet  MATH  Google Scholar 

  • Priestley M, Rao T, Tong H (1974) Applications of principal component analysis and factor analysis in the identification of multivariable systems. IEEE Trans Autom Control 19(6):730–734

    Article  MATH  Google Scholar 

  • Reinsel G (2003) Elements of multivariate time series analysis. Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Reisen VA, Lévy-Leduc C, Taqqu MS (2017) An M-estimator for the long-memory parameter. J Stat Plan Inference 187:44–55

    Article  MathSciNet  MATH  Google Scholar 

  • Reisen VA, Sgrâncio AM, Lévy-Leduc C et al (2019) Robust factor modeling for high-dimensional time series: an application to air pollution data. Appl Math Comput 346:842–852

    MATH  Google Scholar 

  • Reisen VA, Lévy-Leduc C, Bondon P, et al (2020) An overview of robust spectral estimators. In: Chaari F, Leskow J, Zimroz R, Wyłomańska A, Dudek A (eds) Cyclostationarity: theory and methods—IV. CSTA 2017. Applied condition MonitoringTime series and cyclostationary process, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-22529-2_12

  • Rooch A, Zelo I, Fried R (2019) Estimation methods for the LRD parameter under a change in the mean. Stat Pap 60:313–347. https://doi.org/10.1007/s00362-016-0839-7

    Article  MathSciNet  MATH  Google Scholar 

  • Ross SA (1976) The arbitrage theory of capital asset pricing. J Econ Theory 13(3):341–360

    Article  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):1273–1283

    Article  MathSciNet  MATH  Google Scholar 

  • Taqqu MS (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 31(4):287–302. https://doi.org/10.1007/BF00532868

    Article  MathSciNet  MATH  Google Scholar 

  • Toman A (2014) Robust confirmatory factor analysis based on the forward search algorithm. Stat Pap 55:233–252

    Article  MathSciNet  MATH  Google Scholar 

  • Velu RP, Reinsel GC, Wichern DW (1986) Reduced rank models for multiple time series. Biometrika 73(1):105–118

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CNPq, CAPES and FAPES for their financial support. This research was also partially supported by DATAIA Convergence Institute as part of the “Programme d’Investissement d’Avenir, (ANR17-CONV-0003) operated by CentraleSupélec”. The authors thank the referees for their valuable suggestions that have led to clarifying and substantially improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdério Anselmo Reisen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6 Appendix: Technical lemmas

6 Appendix: Technical lemmas

Lemmas 1 and 2 were stated and proved in Reisen et al. (2019) but are recalled here for the reader convenience.

Lemma 1

Let \(\widehat{\varvec{A}}_n\) be a sequence of \(p\times p\) symmetric matrices and \(\varvec{A}\) a \(p\times p\) symmetric matrix such that \(u_n(\widehat{\varvec{A}}_n-\varvec{A})=O_p(1)\), where \(u_n\) is a sequence of positive numbers tending to infinity as n tends to infinity, then

$$\begin{aligned} u_n \sup _{1\le j\le p} |\lambda _j(\widehat{\varvec{A}})-\lambda _j(\varvec{A})|=O_p(1),\; \text { as } n\rightarrow \infty , \end{aligned}$$

where \((\lambda _j(\widehat{\varvec{A}}))_{1\le j\le p}\) and \((\lambda _j(\varvec{A}))_{1\le j\le p}\) are the eigenvalues of \(\widehat{\varvec{A}}_n\) and A, respectively.

Lemma 2

Let \(\widehat{\varvec{A}}_n(h)\) be a sequence of \(p\times p\) symmetric matrices and A(h) a \(p\times p\) symmetric matrix such that \(u_n(\widehat{\varvec{A}}_n(h)-\varvec{A}(h))=O_p(1)\), for each fixed \(h\in \{1,\ldots ,h_{max}\}\), where \(u_n\) is a sequence of positive numbers tending to infinity as n tends to infinity, then

$$\begin{aligned} u_n \left( \sum _{h=1}^{h_{max}}\widehat{\varvec{A}}_n(h)\widehat{\varvec{A}}_n(h)'-\sum _{h=1}^{h_{max}}\varvec{A}(h)\varvec{A}(h)'\right) =O_p(1), \end{aligned}$$

as n tends to infinity.

Lemma 3

Let h be a non negative integer and i and j two integers in \(\{1,\ldots ,k\}\). Assume that (2) holds, then the autocovariance estimator \({\widehat{\gamma }}^{Q}_{i,j}(h)\) defined in (10) satisfies the following limit theorems as n tends to infinity.

  1. (i)

    If, for all i in \(\{1,\ldots ,k\}\), \(D_i>1/2\),

    $$\begin{aligned} \sqrt{n}({\widehat{\gamma }}^{Q}_{i,j}(h)-\gamma _{ij}(h)){\mathop {\longrightarrow }\limits ^{d}}{\mathcal {N}}(0,{\widetilde{\sigma }}_{i,j}^2(h)),\text { as } n\rightarrow \infty , \end{aligned}$$

    where

    $$\begin{aligned} {\widetilde{\sigma }}_{i,j}^2(h)=[\psi (Y_{i,1},Y_{j,1+h})^2]+2\sum _{k\ge 1}{\mathbb {E}}[\psi (Y_{i,1},Y_{j,1+h})\psi (Y_{i,k+1},Y_{j,k+1+h})], \end{aligned}$$

    where \(\psi \) is

    $$\begin{aligned} \psi (x,y)=\frac{1}{2}\left( \gamma _{i,i}(0)+\gamma _{j,j}(0)+2\gamma _{i,j}(h)\right) \nonumber \\ \text {IF}\left( \frac{x+y}{\sqrt{\gamma _{i,i}(0)+\gamma _{j,j}(0)+2\gamma _{i,j}(h)}},Q,\Phi \right) \nonumber \\ -\frac{1}{2}\left( \gamma _{i,i}(0)+\gamma _{j,j}(0)-2\gamma _{i,j}(h)\right) \nonumber \\ \text {IF}\left( \frac{x-y}{\sqrt{\gamma _{i,i}(0)+\gamma _{j,j}(0)-2\gamma _{i,j}(h)}},Q,\Phi \right) , \end{aligned}$$
    (12)

    and \(\text {IF}\) is defined in Lévy-Leduc et al. (2011b, Equation (20)).

  2. (ii)

    If, there exists \(i_0\) in \(\{1,\ldots ,k\}\) such that \(D_{i_0}<1/2\),

    $$\begin{aligned} n^{D_{i_0}\wedge D_j}({\widehat{\gamma }}^{Q}_{i_0,j}(h)-\gamma _{i_0,j}(h))=O_P(1),\text { as } n\rightarrow \infty . \end{aligned}$$

Proof of Lemma 3

Observe that the autocovariance \(\gamma _{i,j}^{(+)}(\ell )\) of the process \((Y_{i,t}+Y_{j,t+h})_{t\ge 1}\) is equal to

$$\begin{aligned} \gamma _{i,j}^{(+)}(\ell ){} & {} ={{\,\textrm{Cov}\,}}(Y_{i,t}+Y_{j,t+h},Y_{i,t+\ell }+Y_{j,t+h+\ell })\\{} & {} =\gamma _{i,i}(\ell )+\gamma _{i,j}(h+\ell )+\gamma _{i,j}(\ell -h)+\gamma _{j,j}(\ell ). \end{aligned}$$

By (2) and by using a Taylor expansion, \(\gamma _{i,j}^{(+)}(\ell )\) is proportional to \(\ell ^{D_i\wedge D_j}\). Hence, the process \((Y_{i,t}+Y_{j,t+h})_{t\ge 1}\) satisfies (Lévy-Leduc et al. 2011b, Assumption A2) with \(D=D_i\wedge D_j\). Since the autocovariance \(\gamma _{i,j}^{(-)}(\ell )\) of the process \((Y_{i,t}-Y_{j,t+h})_{t\ge 1}\) is equal to

$$\begin{aligned} \gamma _{i,j}^{(-)}(\ell ){} & {} ={{\,\textrm{Cov}\,}}(Y_{i,t}-Y_{j,t+h},Y_{i,t+\ell }-Y_{j,t+h+\ell })\\{} & {} =\gamma _{i,i}(\ell )-\gamma _{i,j}(h+\ell )-\gamma _{i,j}(\ell -h)+\gamma _{j,j}(\ell ), \end{aligned}$$

by following the same lines, the process \((Y_{i,t}-Y_{j,t+h})_{t\ge 1}\) also satisfies (Lévy-Leduc et al. 2011b, Assumption A2) with \(D=D_i\wedge D_j\). In the case (i), the proof follows the same lines as the ones of the proof of (i) in Lévy-Leduc et al. (2011b, Theorem 4). In the case (ii), by applying the Delta method to Lévy-Leduc et al. (2011b, Equation (74)), we get

$$\begin{aligned} n^{D_{i_0}\wedge D_j}\left( Q_{n-h}(Y_{i_0,1:n-h}+Y_{j,h+1:n})^2-{{\,\textrm{Var}\,}}(Y_{i_0,t}+Y_{j,t+h})\right) =O_p(1). \end{aligned}$$

Similarly, we have that

$$\begin{aligned} n^{D_{i_0}\wedge D_j}\left( Q_{n-h}(Y_{i_0,1:n-h}-Y_{j,h+1:n})^2-{{\,\textrm{Var}\,}}(Y_{i_0,t}-Y_{j,t+h})\right) =O_p(1), \end{aligned}$$

which gives the result. \(\square \)

Lemma 4

Let h be a non negative integer and i and j two integers in \(\{1,\ldots ,k\}\). Assume that (2) holds, then the autocovariance estimator \({\widehat{\gamma }}_{i,j}(h)\) defined in (8) satisfies the following limit theorems as n tends to infinity.

  1. (i)

    If, for all i in \(\{1,\ldots ,k\}\), \(D_i>1/2\),

    $$\begin{aligned} \sqrt{n}({\widehat{\gamma }}_{i,j}(h)-\gamma _{ij}(h)){\mathop {\longrightarrow }\limits ^{d}}{\mathcal {N}}(0,{\check{\sigma }}_{i,j}^2(h)),\text { as } n\rightarrow \infty , \end{aligned}$$

    where

    $$\begin{aligned} {\check{\sigma }}_{i,j}^2(h)&={\mathbb {E}}\left[ \left( Y_{i,1}Y_{j,h+1}-\gamma _{i,j}(h)\right) ^2\right] \\&\quad +2\sum _{k\ge 1}{\mathbb {E}}\left[ \left( Y_{i,1}Y_{j,h+1}-\gamma _{i,j}(h)\right) \left( Y_{i,1+k}Y_{j,1+h+k}-\gamma _{i,j}(h)\right) \right] . \end{aligned}$$
  2. (ii)

    If, there exists \(i_0\) in \(\{1,\ldots ,k\}\) such that \(D_{i_0}<1/2\),

    $$\begin{aligned} n^{D_{i_0}\wedge D_j}({\widehat{\gamma }}_{i_0,j}(h)-\gamma _{i_0,j}(h))=O_P(1),\text { as } n\rightarrow \infty . \end{aligned}$$

Proof of Lemma 4

  1. (i)

    Note that

    $$\begin{aligned} {\widehat{\gamma }}_{i,j}(h)=\frac{1}{n}\sum _{t=1}^{n-h} Y_{i,t}Y_{j,t+h} -{\bar{Y}}_i{\bar{Y}}_j. \end{aligned}$$

    By Theorem 5.1 of Taqqu (1975),

    $$\begin{aligned} {\bar{Y}}_i=O_P(n^{-D_i/2}) \text { and } {\bar{Y}}_j=O_P(n^{-D_j/2}). \end{aligned}$$

    Let \({\mathcal {Y}}_t=(Y_{i,t},Y_{j,t+h})\) and \(f:(x,y)\mapsto xy\) then, by Theorem 4 of Arcones (1994), we get that

    $$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^{n-h} \left( f({\mathcal {Y}}_t)-{\mathbb {E}}(f({\mathcal {Y}}_t))\right) =\frac{1}{\sqrt{n}}\sum _{t=1}^{n-h} \left( Y_{i,t}Y_{j,t+h}-\gamma _{ij}(h)\right) {\mathop {\longrightarrow }\limits ^{d}}{\mathcal {N}}(0,{\check{\sigma }}_{i,j}^2(h)) \end{aligned}$$
    (13)

    since f is of Hermite rank 2, \(r^{(1,2)}(h)={\mathbb {E}}[Y_{i,t} Y_{j,t+h}]=\gamma _{i,j}(h)\), \(r^{(1,1)}(h)={\mathbb {E}}[Y_{i,t} Y_{i,t+h}]=\gamma _{i,i}(h)\), \(r^{(2,2)}(h)={\mathbb {E}}[Y_{j,t} Y_{j,t+h}]=\gamma _{j,j}(h)\) and \(D_i>1/2\), for all i. In (13),

    $$\begin{aligned} {\check{\sigma }}_{i,j}^2(h)={\mathbb {E}}\left[ \left( Y_{i,1}Y_{j,h+1}-\gamma _{i,j}(h)\right) ^2\right] \\+2\sum _{k\ge 1}{\mathbb {E}}\left[ \left( Y_{i,1}Y_{j,h+1}-\gamma _{i,j}(h)\right) \left( Y_{i,1+k}Y_{j,1+h+k}-\gamma _{i,j}(h)\right) \right] . \end{aligned}$$
  2. (ii)

    Observe that

    $$\begin{aligned} {\widehat{\gamma }}_{i,j}(h)=\frac{1}{4}\left( {{\widehat{\sigma }}_{n-h,Y_{i,1:n-h} +Y_{j,h+1:n}}}^2-{{\widehat{\sigma }}_{n-h,Y_{i,1:n-h}-Y_{j,h+1:n}}}^2\right) \end{aligned}$$
    (14)

    where

    $$\begin{aligned} {{\widehat{\sigma }}_{n-h,Y_{i,1:n-h}+Y_{j,h+1:n}}}^2=:{\widehat{\sigma }}_{+,i,j}^2 =\frac{1}{n}\sum _{t=1}^{n-h}(Y_{i,t}+Y_{j,t+h})^2-({\bar{Y}}_i+{\bar{Y}}_j)^2 \\ \text { with } {\bar{Y}}_i=\frac{1}{n}\sum _{t=1}^nY_{i,t} \text { and } {\bar{Y}}_j=\frac{1}{n}\sum _{t=1}^nY_{j,t} \end{aligned}$$

    and

    $$\begin{aligned} {{\widehat{\sigma }}_{n-h,Y_{i,1:n-h}-Y_{j,h+1:n}}}^2=:{\widehat{\sigma }}_{-,i,j}^2 =\frac{1}{n}\sum _{t=1}^{n-h}(Y_{i,t}-Y_{j,t+h})^2-({\bar{Y}}_i-{\bar{Y}}_j)^2. \end{aligned}$$

    By using the same arguments as those used in the proof of Lemma 3, we get that \((Y_{i,t}+Y_{j,t+h})_{t\ge 1}\) and \((Y_{i,t}-Y_{j,t+h})_{t\ge 1}\) satisfy (Lévy-Leduc et al. 2011b, Assumption A2) with \(D=D_i\wedge D_j\). Since \(D_{i_0}<1/2\), \(D_{i_0}\wedge D_j<1/2\) for all j in \(\{1,\ldots ,k\}\). Thus, \((Y_{i_0,t}+Y_{j,t+h})_{t\ge 1}\) and \((Y_{i_0,t}-Y_{j,t+h})_{t\ge 1}\) satisfy Assumption (A2) with \(D<1/2\). Hence, by Lévy-Leduc et al. (2011b, Proposition 3(b)) and the Delta method,

    $$\begin{aligned} n^{D_{i_0}\wedge D_j}\left( {\widehat{\sigma }}_{+,i_0,j}^2-{{\,\textrm{Var}\,}}(Y_{i_0,t}+Y_{j,t+h})\right) =O_p(1),\text { as } n\rightarrow \infty \end{aligned}$$

    and

    $$\begin{aligned} n^{D_{i_0}\wedge D_j}\left( {\widehat{\sigma }}_{-,i_0,j}^2-{{\,\textrm{Var}\,}}(Y_{i_0,t}-Y_{j,t+h})\right) =O_p(1),\text { as } n\rightarrow \infty , \end{aligned}$$

    which concludes the proof by (14).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisen, V.A., Lévy-Leduc, C., Monte, E.Z. et al. A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method. Stat Papers (2023). https://doi.org/10.1007/s00362-023-01504-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00362-023-01504-2

Keywords

Mathematics Subject Classification

Navigation