Skip to main content
Log in

Bartlett corrections for zero-adjusted generalized linear models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Zero-adjusted generalized linear models (ZAGLMs) are used in many areas to fit variables that are discrete at zero and continuous on the positive real numbers. As in other classes of regression models, hypothesis testing inference in the class of ZAGLMs is usually performed using the likelihood ratio statistic. However, the LR test is substantially size distorted when the sample size is small. In this work, we derive an analytical Bartlett correction of the LR statistic. We also consider two different adjustments for the LR statistic based on bootstrap. Monte Carlo simulation studies show that the improved LR tests have null rejection rates close to the nominal levels in small sample sizes and similar power. An application illustrates the usefulness of the improved statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araújo MC, Cysneiros AH, Montenegro LC (2020) Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Stat Pap 61:167–188

    Article  MathSciNet  MATH  Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proceedings of the royal society of London A: Mathematical, Physical and Engineering Sciences 160(901):268–282

  • Bayer FM, Cribari-Neto F (2013) Bartlett corrections in beta regression models. J Stat Plan Inference 143(3):531–547

    Article  MathSciNet  MATH  Google Scholar 

  • Bortoluzzo AB, Claro DP, Caetano MAL, Artes R (2011) Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution. Braz Adm Rev 8(1):37–47

    Article  Google Scholar 

  • Botter DA, Cordeiro GM (1997) Bartlett corrections for generalized linear models with dispersion covariates. Commun Stat Theory Methods 26(2):279–307

    Article  MathSciNet  MATH  Google Scholar 

  • Calsavara VF, Rodrigues AS, Rocha R, Louzada F, Tomazella V, Souza AC, Costa RA, Francisco RPV (2019) Zero-adjusted defective regression models for modeling lifetime data. J Appl Stat 46(13):2434–2459

    Article  MathSciNet  MATH  Google Scholar 

  • Cordeiro GM (1983) Improved likelihood ratio statistics for generalized linear models. J R Stat Soc B 45(3):404–413

    MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Cribari-Neto F (2014) An introduction to Bartlett correction and bias reduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Cordeiro GM, Paula GA, Botter DA (1994) Improved likelihood ratio tests for dispersion models. Int Stat Rev 62(2):257–274

    Article  MATH  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R S Soc B 49(1):1–39

    MathSciNet  MATH  Google Scholar 

  • Das U, Dhar SS, Pradhan V (2018) Corrected likelihood-ratio tests in logistic regression using small-sample data. Commun Stat Theory Methods 47(17):4272–4285

    Article  MathSciNet  MATH  Google Scholar 

  • Doornik JA (2009) An object-oriented matrix language: Ox 6. Timberlake Consultants Press, London

    Google Scholar 

  • Dunn PK, Smyth GK (2018) Generalized linear models with examples in R. Springer, Berlin

    Book  MATH  Google Scholar 

  • Efron B et al (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Guedes AC, Cribari-Neto F, Espinheira PL (2020) Modified likelihood ratio tests for unit gamma regressions. J Appl Stat 47(9):1562–1586

    Article  MathSciNet  MATH  Google Scholar 

  • Guedes AC, Cribari-Neto F, Espinheira PL (2021) Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics. PLoS ONE 16(6):e0253349

    Article  Google Scholar 

  • Hashimoto EM, Ortega EM, Cordeiro GM, Cancho VG, Klauberg C (2019) Zero-spiked regression models generated by gamma random variables with application in the resin oil production. J Stat Comput Simul 89(1):52–70

    Article  MathSciNet  MATH  Google Scholar 

  • Heller G, Stasinopoulos M, Rigby B The zero-adjusted inverse gaussian distribution as a model for insurance claims, in: J. Hinde, J. Einbeck, J. Newell (Eds.), Proceedings of the 21th International Workshop on Statistical Modelling, Ireland, Galway, 2006, pp. 226–233

  • Lambert D (1992) Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    Article  MATH  Google Scholar 

  • Lawley DN (1956) A general method for approximating to the distribution of likelihood ratio criteria. Biometrika 43(3/4):295–303

    Article  MathSciNet  MATH  Google Scholar 

  • Loose LH, Bayer FM, Pereira TL (2017) Bootstrap bartlett correction in inflated beta regression. Commun Stat-Simul Comput 46(4):2865–2879

    Article  MathSciNet  MATH  Google Scholar 

  • Loose LH, Valença DM, Bayer FM (2018) On bootstrap testing inference in cure rate models. J Stat Comput Simul 88(17):3437–3454

    Article  MathSciNet  MATH  Google Scholar 

  • Magalhães TM, Gallardo DI (2020) Bartlett and bartlett-type corrections for censored data from a weibull distribution. Stat Op Res Trans 44(1):127–140

    MathSciNet  MATH  Google Scholar 

  • Melo TF, Ferrari SL, Cribari-Neto F (2009) Improved testing inference in mixed linear models. Comput Stat Data Anal 53(7):2573–2582

    Article  MathSciNet  MATH  Google Scholar 

  • Melo TF, Vargas TM, Lemonte AJ, Moreno-Arenas G (2022) Higher-order asymptotic refinements in the multivariate dirichlet regression model. Commun Stat-Simul Comput 51(1):53–71

    Article  MathSciNet  MATH  Google Scholar 

  • Michaelis P, Klein N, Kneib T (2020) Mixed discrete-continuous regression-a novel approach based on weight functions. Stat 9(1):e277

    Article  MathSciNet  Google Scholar 

  • Moulton LH, Weissfeld LA, Laurent RTS (1993) Bartlett correction factors in logistic regression models. Comput Stat Data Anal 15(1):1–11

    Article  MATH  Google Scholar 

  • Nogarotto DC, Azevedo CLN, Bazán JL et al (2020) Bayesian modeling and prior sensitivity analysis for zero-one augmented beta regression models with an application to psychometric data. Braz J Probab Stat 34(2):304–322

    Article  MathSciNet  MATH  Google Scholar 

  • Ospina R, Ferrari S (2012) A general class of zero-or-one inflated beta regression models. Comput Stat Data Anal 56(6):1609–1623

    Article  MathSciNet  MATH  Google Scholar 

  • Pereira TL, Cribari-Neto F (2014) Modified likelihood ratio statistics for inflated beta regressions. J Stat Comput Simul 84(5):982–998

    Article  MathSciNet  MATH  Google Scholar 

  • Pereira GH, Scudilio J, Santos-Neto M, Botter DA, Sandoval MC (2020) A class of residuals for outlier identification in zero adjusted regression models. J Appl Stat 47(10):1833–1847

    Article  MathSciNet  MATH  Google Scholar 

  • Rauber C, Cribari-Neto F, Bayer FM (2020) Improved testing inferences for beta regressions with parametric mean link function. Adv Stat Anal 104(4):687–717

    Article  MathSciNet  MATH  Google Scholar 

  • Rocha LO, Nakai VK, Braghini R, Reis TA, Kobashigawa E, Corrêa B (2009) Mycoflora and co-occurrence of fumonisins and aflatoxins in freshly harvested corn in different regions of brazil. Int J Mol Sci 10(11):5090–5103

    Article  Google Scholar 

  • Rocha LO, Reis GM, Fontes LC, Piacentini KC, Barroso VM, Reis TA, Pereira AA, Corrêa B (2017) Association between fum expression and fumonisin contamination in maize from silking to harvest. Crop Prot 94:77–82

    Article  Google Scholar 

  • Rocke DM (1989) Bootstrap bartlett adjustment in seemingly unrelated regression. J Am Stat Assoc 84(406):598–601

    Article  MathSciNet  Google Scholar 

  • Rubec PJ, Kiltie R, Leone E, Flamm RO, McEachron L, Santi C (2016) Using delta-generalized additive models to predict spatial distributions and population abundance of juvenile pink shrimp in tampa bay, florida. Marine Coastal Fish 8(1):232–243

    Article  Google Scholar 

  • Sen PN, Singer JM, Lima ACP (2010) From finite sample to asymptotic methods in statistics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Silva AR, Azevedo CL, Bazán JL, Nobre JS (2021) Augmented-limited regression models with an application to the study of the risk perceived using continuous scales. J Appl Stat 48(11):1998–2021

    Article  MathSciNet  MATH  Google Scholar 

  • Skovgaard IM (2001) Likelihood asymptotics. Scand J Stat 28(1):3–32

    Article  MathSciNet  MATH  Google Scholar 

  • Thomson FJ, Letten AD, Tamme R, Edwards W, Moles AT (2018) Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytol 217(1):407–415

    Article  Google Scholar 

  • Tomazella V, Nobre JS, Pereira GH, Santos-Neto M (2019) Zero-adjusted birnbaum-saunders regression model. Statist Probab Lett 149:142–145

    Article  MathSciNet  MATH  Google Scholar 

  • Tong E, Mues C, Thomas L (2013) A zero-adjusted gamma model for mortgage loan loss given default. Int J Forecast 29:548–562

    Article  Google Scholar 

  • Tong EN, Mues C, Brown I, Thomas LC (2016) Exposure at default models with and without the credit conversion factor. Eur J Op Res 252(3):910–920

    Article  MathSciNet  MATH  Google Scholar 

  • Ye T, Lachos VH, Wang X, Dey DK (2021) Comparisons of zero-augmented continuous regression models from a Bayesian perspective. Stat Med 40(5):1073–1100

    Article  MathSciNet  Google Scholar 

  • Zamani H, Bazrafshan O (2020) Modeling monthly rainfall data using zero-adjusted models in the semi-arid, arid and extra-arid regions. Meteorol Atmos Phys 132(2):239–253

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the two referees’ suggestions, which helped us to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago M. Magalhães.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The remaining quantities to define the Bartlett correction factor, see equation (8), are:

$$\begin{aligned} \varepsilon _{\beta _{p_{1}}}&= \frac{1}{4} \text{ tr } \left\{ {{\varvec{\Delta }}} {{\varvec{\Phi }}} {{\varvec{H}}}_{1} {\varvec{Z}}_{\beta d}^2 \right\} - \frac{1}{3} {{\varvec{1}}}^{\top } {{\varvec{\Delta }}} {{\varvec{\Phi }}} {{\varvec{G}}} {{\varvec{Z}}}_{\beta }^{(3)} ({{\varvec{F}}} + {{\varvec{G}}}) {{\varvec{\Phi }}} {{\varvec{\Delta }}} {{\varvec{1}}} \\&+ \frac{1}{12} {{\varvec{1}}}^{\top } {{\varvec{\Delta }}} {{\varvec{\Phi }}} {{\varvec{F}}} \left( 2 {{\varvec{Z}}}_{\beta }^{(3)} + 3 {{\varvec{Z}}}_{\beta d} {{\varvec{Z}}}_{\beta } {{\varvec{Z}}}_{\beta d} \right) {{\varvec{F}}} {{\varvec{\Phi }}} {{\varvec{\Delta }}} {{\varvec{1}}},\\ \varepsilon _{\delta _{p_{2}}}&= \frac{1}{4} \text{ tr } \left\{ {{\varvec{\Delta }}} {{\varvec{H}}}_{2} {{\varvec{Z}}}_{\delta d}^2 \right\} + \frac{1}{12} {{\varvec{1}}}^{\top } {{\varvec{\Delta }}} {{\varvec{D}}}_{3} {{\varvec{\Phi }}}_1^3 \left( 2 {{\varvec{Z}}}_{\delta }^{(3)} + 3 {{\varvec{Z}}}_{\delta d} {{\varvec{Z}}}_{\delta } {{\varvec{Z}}}_{\delta d} \right) {{\varvec{\Phi }}}_1^3 {{\varvec{D}}}_{3} {{\varvec{\Delta }}} {{\varvec{1}}} \\&+ \frac{1}{4} {{\varvec{1}}}^{\top } {{\varvec{\Delta }}} {{\varvec{D}}}_{2} {{\varvec{\Phi }}}_1 {{\varvec{\Phi }}}_2 \left( {{\varvec{Z}}}_{\delta d} {{\varvec{Z}}}_{\delta } {{\varvec{Z}}}_{\delta d} - 2 {{\varvec{Z}}}_{\delta }^{(3)} \right) {{\varvec{\Phi }}}_2 {{\varvec{\Phi }}}_1 {{\varvec{D}}}_{2} {{\varvec{\Delta }}} {{\varvec{1}}} \\&+ \frac{1}{2} {{\varvec{1}}}^{\top } {{\varvec{\Delta }}} {{\varvec{D}}}_{3} {{\varvec{\Phi }}}_1^3 {{\varvec{Z}}}_{\delta d} {{\varvec{Z}}}_{\delta } {{\varvec{Z}}}_{\delta d} {{\varvec{\Phi }}}_2 {{\varvec{\Phi }}}_1 {{\varvec{D}}}_{2} {{\varvec{\Delta }}} {{\varvec{1}}},\\ \varepsilon _{\gamma _{p_{3}}}&= \frac{1}{4} \text{ tr } \left\{ {{\varvec{H}}}_{3} {{\varvec{Z}}}_{\gamma d}^2 \right\} - \frac{1}{3} {{\varvec{1}}}^{\top } {{\varvec{G}}}_{\pi } {{\varvec{Z}}}_{\gamma }^{(3)} ({{\varvec{F}}}_{\pi } + {{\varvec{G}}}_{\pi }) {{\varvec{1}}} \\&+ \frac{1}{12} {{\varvec{1}}}^{\top } {{\varvec{F}}}_{\pi } \left( 2 {{\varvec{Z}}}_{\gamma }^{(3)} + 3 {{\varvec{Z}}}_{\gamma d} {{\varvec{Z}}}_{\gamma } {{\varvec{Z}}}_{\gamma d} \right) {{\varvec{F}}}_{\pi } {{\varvec{1}}}, \end{aligned}$$

\({{\varvec{F}}} = \text{ diag }\{f_{11}, \ldots , f_{nn}\}\), \({{\varvec{G}}} = \text{ diag }\{g_{11}, \ldots , g_{nn}\}\), \({{\varvec{F}}}_{\pi } = \text{ diag }\{f_{\pi 11}, \ldots , f_{\pi nn}\}\), \({{\varvec{G}}}_{\pi } = \text{ diag }\{g_{\pi 11}, \ldots , g_{\pi nn}\}\), \({{\varvec{H}}}_{i} = \text{ diag }\{h_{i,11}, \ldots , h_{i,nn}\}\), \(i = 1, 2, 3\), where

$$\begin{aligned} f_{\ell \ell }&= \frac{1}{V_{\ell }} \frac{d\mu _{\ell }}{d\eta _{1\ell }} \frac{d^2\mu _{\ell }}{d\eta _{1\ell }^2}, \ \ g_{\ell \ell } = \frac{1}{V_{\ell }} \frac{d\mu _{\ell }}{d\eta _{1\ell }} \frac{d^2\mu _{\ell }}{d\eta _{1\ell }^2} - \frac{1}{V_{\ell }^2} \frac{d V_{\ell }}{d\mu _{\ell }} \left( \frac{d\mu _{\ell }}{d\eta _{1\ell }}\right) ^3, \\ f_{\pi \ell \ell }&= \frac{1}{V_{\pi \ell }} \frac{d\pi _{\ell }}{d\eta _{3\ell }} \frac{d^2\pi _{\ell }}{d\eta _{3\ell }^2}, \ \ g_{\pi \ell \ell } = \frac{1}{V_{\pi \ell }} \frac{d\pi _{\ell }}{d\eta _{3\ell }} \frac{d^2\pi _{\ell }}{d\eta _{3\ell }^2} - \frac{1}{V_{\pi \ell }^2} \frac{d V_{\pi \ell }}{d\pi _{\ell }} \left( \frac{d\pi _{\ell }}{d\eta _{3\ell }}\right) ^3, \\ h_{1,\ell \ell }&= w_{\ell }^2 \left[ \frac{2}{V_{\ell }} \left( \frac{d V_{\ell }}{d \mu _{\ell }}\right) ^{2} - \frac{d^2 V_{\ell }}{d \mu _{\ell }^2} \right] + \frac{1}{V_{\ell }} \frac{d^2\mu _{\ell }}{d\eta _{1\ell }^2} \left[ \frac{d^2\mu _{\ell }}{d\eta _{1\ell }^2} - 4 w_{\ell } \frac{d V_{\ell }}{d \mu _{\ell }} \right] , \\ h_{2,\ell \ell }&= \frac{d^4 d_2(\phi _{\ell })}{d\phi _{\ell }^4} \left( \frac{d\phi _{\ell }}{d\eta _{2\ell }}\right) ^4 + 2 \frac{d^3 d_2(\phi _{\ell })}{d\phi _{\ell }^3} \left( \frac{d\phi _{\ell }}{d\eta _{2\ell }}\right) ^2 \frac{d^2\phi _{\ell }}{d\eta _{2\ell }^2} - \frac{d^2 d_2(\phi _{\ell })}{d\phi _{\ell }^2} \left( \frac{d^2\phi _{\ell }}{d\eta _{2\ell }^2}\right) ^2, \\ h_{3,\ell \ell }&= 2 \left[ \frac{1}{\pi _{\ell }^{2}(1 - \pi _{\ell })^{2}} + \frac{(1 - 2\pi _{\ell })^2}{\pi _{\ell }^{3}(1 - \pi _{\ell })^{3}} \right] \left( \frac{d\pi _{\ell }}{d\eta _{3\ell }}\right) ^4 \\&- \frac{4(1 - 2\pi _{\ell })}{\pi _{\ell }^{2}(1 - \pi _{\ell })^{2}} \left( \frac{d\pi _{\ell }}{d\eta _{3\ell }}\right) ^2 \frac{d^2\pi _{\ell }}{d\eta _{3\ell }^2} + \frac{1}{\pi _{\ell }(1 - \pi _{\ell })} \left( \frac{d^2\pi _{\ell }}{d^2\eta _{3\ell }}\right) ^2. \end{aligned}$$

Although deriving the expression for \(\varepsilon _p\) entails a great deal of algebra, this expression only involves simple operations of diagonal matrices, i.e. they are simple expressions to implement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, T.M., Pereira, G.H.A., Botter, D.A. et al. Bartlett corrections for zero-adjusted generalized linear models. Stat Papers (2023). https://doi.org/10.1007/s00362-023-01477-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00362-023-01477-2

Keywords

Mathematics Subject Classification

Navigation