Skip to main content
Log in

On the Rényi index of random graphs

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Networks (graphs) permeate scientific fields such as biology, social science, economics, etc. Empirical studies have shown that real-world networks are often heterogeneous, that is, the degrees of nodes do not concentrate on a number. Recently, the Rényi index was tentatively used to measure network heterogeneity. However, the validity of the Rényi index in network settings is not theoretically justified. In this paper, we study this problem. We derive the limit of the Rényi index of a heterogeneous Erdös–Rényi random graph and a power-law random graph, as well as the convergence rates. Our results show that the Erdös–Rényi random graph has asymptotic Rényi index zero and the power-law random graph (highly heterogeneous) has asymptotic Rényi index one. In addition, the limit of the Rényi index increases as the graph gets more heterogeneous. These results theoretically justify the Rényi index is a reasonable statistical measure of network heterogeneity. We also evaluate the finite-sample performance of the Rényi index by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbe E (2018) Community detection and stochastic block models: recent developments. J Mach Learn Res 18:1–86

    MathSciNet  MATH  Google Scholar 

  • Amini A, Chen A, Bickel P (2013) Pseudo-likelihood methods for community detection in large sparse networks. Ann Stat 41(4):2097–2122

    Article  MathSciNet  MATH  Google Scholar 

  • Bianconi G, Marsili M (2005) Emergence of large cliques in random scale-free network. Europhys Lett 74:740

    Article  MathSciNet  Google Scholar 

  • Bianconi G, Marsili M (2006) Number of cliques in random scale-free network ensembles. Physica D 224:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Sarkar P (2016) Hypothesis testing for automated community detection in networks. J R Stat Soc B 78:253–273

    Article  MathSciNet  MATH  Google Scholar 

  • Bogerd K, Castro R, Hofstad R (2020) Cliques in rank-1 random graphs: the role of inhomogeneity. Bernoulli 26(1):253–285

    Article  MathSciNet  MATH  Google Scholar 

  • Britton T, Deijfen M, Martin-Lof A (2006) Generating simple random graphs with prescribed degree distribution. J Stat Phys 124:1377–1397

    Article  MathSciNet  MATH  Google Scholar 

  • Chakrabarty A, Hazra SR, Hollander FD, Sfragara M (2020a) Large deviation principle for the maximal eigenvalue of inhomogeneous Erdös-Rényi random graphs. J Theor Probab. https://doi.org/10.1007/s10959-021-01138-w

  • Chakrabarty A, Chakrabarty S, Hazra RS (2020b) Eigenvalues outside the bulk of of inhomogeneous Erdös-Rényi random graphs. J Stat Phys 181:1746–1780

  • Chakrabarty A, Hazra SR, Hollander FD, Sfragara M (2021) Spectra of adjacency and Laplacian matrices of inhomogeneous Erdös-Rényi random graphs. Random Matrices 10(1):215009

    Article  MATH  Google Scholar 

  • Chen J, Yuan B (2006) Detecting functional modules in the yeast prote in protein interaction network. Bioinformatics 22(18):2283–2290

    Article  Google Scholar 

  • Chiasserini CF, Garetto M, Leonardi E (2016) Social network de-anonymization under scale-free user relations. IEEE/ACM Trans Netw 24(6):3756–3769

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman M (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  MathSciNet  MATH  Google Scholar 

  • Coulter PB (1989) Measuring inequality: a methodological handbook. Westview Press, Boulder

    Google Scholar 

  • Cruz C (2018) Social networks and the targeting of vote buying. Comp Polit Stud 52(3):382–411

    Article  Google Scholar 

  • Eliazar I (2011) Randomness, evenness, and Rényi’s index. Physica A 390(11):1982–1990

    Article  MathSciNet  MATH  Google Scholar 

  • Eliazar I, Sokolov I (2012) Measuring statistical evenness: a panoramic overview. Physica A 391:1323–1353

    Article  Google Scholar 

  • Goldenberg A, Zheng AXS, Fienberg E, Airoldi EM (2010) A survey of statistical network models. Found Trends Mach Learn 2(2):129–233

    Article  MATH  Google Scholar 

  • Janson S, Luczak T, Norros I (2010) Large cliques in a power-law random graph. J Appl Prob 47:1124–1135

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen A, Leeuwaarden J, Shneer S (2019) Counting cliques and cycles in scale-free inhomogeneous random graphs. J Stat Phys 175:161–184

    Article  MathSciNet  MATH  Google Scholar 

  • Kardar M (2007) Statistical physics of particles. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Karrer B, Newman ME (2011) Stochastic blockmodels and community structure in networks. Phys Rev E 83(1):016107

    Article  MathSciNet  Google Scholar 

  • Kulahci I et al (2022) Social networks predict selective observation and information spread in ravens. R Soc Open Sci 3:160256

    Article  Google Scholar 

  • Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  • Nie CX (2021) Studying the correlation structure based on market geometry. J Econ Interact Coord 16:411–441

    Article  Google Scholar 

  • Nie CX, Song FT (2019) Global Renyi index of the distance matrix. Physica A 514:902–915

    Article  Google Scholar 

  • Nie CX, Song FT (2021) Entropy of graphs in financial markets. Comput Econ 57:1149–1166

    Article  Google Scholar 

  • Nie CX, Song FT, Li SP (2016) Rényi indices of financial minimum spanning trees. Physica A 444:883–889

    Article  Google Scholar 

  • Read JM, Eames KT, Edmunds WJ (2008) Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface 5(26):1001–1007

    Article  Google Scholar 

  • Rinaldo P, Fienberg SE (2013) Maximum likelihood estimation in the \(\beta \)-model. Ann Stat 41(3):1085–1110

    Article  MathSciNet  MATH  Google Scholar 

  • Voialov I et al (2019) Scale-free networks well done. Phys Rev Res 1:033034

    Article  Google Scholar 

  • Yu L, Xu J, Lin X (2021) The power of D-hops in matching power-law graphs. Proc ACM Meas Anal Comput Syst 5(2):1–43

    Article  Google Scholar 

  • Yuan M, Shang Z (2021) Informatin limits for detection a subhypergraph. STAT 10:e407

    Article  Google Scholar 

  • Yuan M, Shang Z (2022) Sharp detection boundaries on testing dense subhypergraph. Bernoulli 28(4):2459–2491

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Editor and anonymous reviewers for valuable comments that significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingao Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M. On the Rényi index of random graphs. Stat Papers (2023). https://doi.org/10.1007/s00362-023-01463-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00362-023-01463-8

Keywords

Mathematics Subject Classification

Navigation