Skip to main content
Log in

On the maximal deviation of kernel regression estimators with NMAR response variables

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This article focuses on the problem of kernel regression estimation in the presence of nonignorable incomplete data with particular focus on the limiting distribution of the maximal deviation of the proposed estimators. From an applied point of view, such a limiting distribution enables one to construct asymptotically correct uniform bands, or perform tests of hypotheses, for a regression curve when the available data set suffers from missing (not necessarily at random) response values. Furthermore, such asymptotic results have always been of theoretical interest in mathematical statistics. We also present some numerical results that further confirm and complement the theoretical developments of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Al-Sharadqah A, Mojirsheibani M (2020) A simple approach to construct confidence bands for a regression function with incomplete data. AStA Adv Stat Anal 104:81–99

    Article  MathSciNet  MATH  Google Scholar 

  • Burke M (1998) A Gaussian bootstrap approach to estimation and tests. In: Szyszkowicz EB (ed) Asymptotic methods in probability and statistics. North-Holland, Amsterdam, pp 697–706

    Chapter  MATH  Google Scholar 

  • Burke M (2000) Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap. Stat Probab Lett 46:13–20

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Low M, Zongming M (2014) Adaptive confidence bands for nonparametric regression functions. J Am Stat Assoc 109:1054–1070

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Diao G, Qin J (2020) Pseudo likelihood-based estimation and testing of missingness mechanism function in nonignorable missing data problems. Scand J Stat 47:1377–1400

    Article  MathSciNet  MATH  Google Scholar 

  • Claeskens G, Van Keilegom I (2003) Bootstrap confidence bands for regression curves and their derivatives. Ann Stat 31:1852–1884

    Article  MathSciNet  MATH  Google Scholar 

  • Dehuvels P, Mason D (2004) General asymptotic confidence bands based on kernel-type function estimators. Stat Inference Stoch Processes 7:225–277

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, New York

    Book  MATH  Google Scholar 

  • Eubank R, Speckman P (2012) Confidence bands in nonparametric regression. J Am Stat Assoc 88:1287–1301

    Article  MathSciNet  MATH  Google Scholar 

  • Fang F, Zhao J, Shao J (2018) Imputation-based adjusted score equations in generalized linear models with nonignorable missing covariate values. Stat Sin 28:1677–1701

    MathSciNet  MATH  Google Scholar 

  • Gardes L (2020) Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates. Electron J Stat 14:661–701

    Article  MathSciNet  MATH  Google Scholar 

  • Gu L, Yang L (2015) Oracally efficient estimation for single-index link function with simultaneous confidence band. Electron J Stat 9:1540–1561

    Article  MathSciNet  MATH  Google Scholar 

  • Gu L, Wang S, Yang L (2021) Smooth simultaneous confidence band for the error distribution function in nonparametric regression. Comput Stat Data Anal 155:107106

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W (1989) Asymptotic maximal deviation of M-smoothers. J Multivar Anal 29:163–179

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Song S (2010) Confidence bands in quantile regression. Econom Theory 26:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Horváth L (2000) Approximations for hybrids of empirical and partial sums processes. J Stat Plan Inference 88:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Horváth L, Kokoszka P, Steinebach J (2000) Approximations for weighted bootstrap processes with an application. Stat Probab Lett 48:59–70

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen A (2005) Resampling Student’s t-type statistics. Ann Inst Stat Math 57:507–529

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen A, Pauls T (2003) How do bootstrap and permutation tests work? Ann Stat 31:768–806

    Article  MathSciNet  MATH  Google Scholar 

  • Johnston G (1982) Probabilities of maximal deviations for nonparametric regression function estimates. J Multivar Anal 12:402–414

    Article  MathSciNet  MATH  Google Scholar 

  • Kim JK, Yu C (2011) A semiparametric estimation of mean functionals with nonignorable missing data. J Am Stat Assoc 106:157–165

    Article  MathSciNet  MATH  Google Scholar 

  • Kojadinovic I, Yan J (2012) Goodness-of-fit testing based on a weighted bootstrap: a fast large-sample alternative to the parametric bootstrap. Can J Stat 40:480–500

    Article  MathSciNet  MATH  Google Scholar 

  • Konakov V, Piterbarg V (1984) On the convergence rate of maximal deviation distribution. J Multivar Anal 15:279–294

    Article  MATH  Google Scholar 

  • Liero H (1982) On the maximal deviation of the kernel regression function estimate. Ser Stat 13:171–182

    Article  MathSciNet  MATH  Google Scholar 

  • Liu T, Yuan X (2020) Doubly robust augmented-estimating-equations estimation with nonignorable nonresponse data. Stat Pap 61:2241–2270

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Yau CY (2021) Fitting time series models for longitudinal surveys with nonignorable missing data. J Stat Plan Inference 214:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Lu X, Kuriki S (2017) Simultaneous confidence bands for contrasts between several nonlinear regression curves. J Multivar Anal 155:83–104

    Article  MathSciNet  MATH  Google Scholar 

  • Lütkepohl H (2013) Reducing confidence bands for simulated impulse responses. Stat Pap 54:1131–1145

    Article  MathSciNet  MATH  Google Scholar 

  • Mack Y, Silverman Z (1982) Weak and strong uniform consistency of kernel regression estimates. Z Wahrsch Verw Gebiete 61:405–415

    Article  MathSciNet  MATH  Google Scholar 

  • Maity A, Pradhan V, Das U (2019) Bias reduction in logistic regression with missing responses when the missing data mechanism is nonignorable. Am Stat 73:340–349

    Article  MathSciNet  MATH  Google Scholar 

  • Massé P, Meiniel W (2014) Adaptive confidence bands in the nonparametric fixed design regression model. J Nonparametr Stat 26:451–469

    Article  MathSciNet  MATH  Google Scholar 

  • Mojirsheibani M (2021) On classification with nonignorable missing data. J Multivariate Anal 184:104775

    Article  MathSciNet  MATH  Google Scholar 

  • Morikawa K, Kano Y (2018) Identification problem of transition models for repeated measurement data with nonignorable missing values. J Multivariate Anal 165:216–230

    Article  MathSciNet  MATH  Google Scholar 

  • Morikawa K, Kim JK (2018) A note on the equivalence of two semiparametric estimation methods for nonignorable nonresponse. Stat Probab Lett 140:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Morikawa K, Kim JK, Kano Y (2017) Semiparametric maximum likelihood estimation with data missing not at random. Can J Statist 45:393–409

    Article  MathSciNet  MATH  Google Scholar 

  • Muminov M (2011) On the limit distribution of the maximum deviation of the empirical distribution density and the regression function. I. Theory Probab Appl 55:509–517

    Article  MathSciNet  MATH  Google Scholar 

  • Muminov M (2012) On the limit distribution of the maximum deviation of the empirical distribution density and the regression function II. Theory Probab Appl 56:155–166

    Article  MathSciNet  MATH  Google Scholar 

  • Nemouchi N, Mohdeb Z (2010) Asymptotic confidence bands for density and regression functions in the Gaussian case. J Afrika Statistika 5:279–287

    MathSciNet  MATH  Google Scholar 

  • Neumann M, Polzehl J (1998) Simultaneous bootstrap confidence bands in nonparametric regression. J Nonparametr Stat 9:307–333

    Article  MathSciNet  MATH  Google Scholar 

  • O’Brien J, Gunawardena H, Paulo J, Chen X, Ibrahim J, Gygi S, Qaqish B (2018) The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments. Ann Appl Statist 12:2075–2095

    Article  MathSciNet  MATH  Google Scholar 

  • Praestgaard J, Wellner J (1993) Exchangeably weighted bootstraps of the general empirical process. Ann Probab 21:2053–2086

    Article  MathSciNet  MATH  Google Scholar 

  • Proksch K (2016) On confidence bands for multivariate nonparametric regression. Ann Inst Stat Math 68:209–236

    Article  MathSciNet  MATH  Google Scholar 

  • Racine J, Hayfield T (2008) Nonparametric econometrics: the np package. J Stat Softw 27:1–32

    Google Scholar 

  • Racine J, Li Q (2004) Cross-validated local linear nonparametric regression. Stat Sin 14:485–512

    MathSciNet  MATH  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Sabbah C (2014) Uniform confidence bands for local polynomial quantile estimators. ESAIM: PS 18:265–276

  • Sadinle M, Reiter J (2019) Sequentially additive nonignorable missing data modelling using auxiliary marginal information. Biometrika 106:889–911

    Article  MathSciNet  MATH  Google Scholar 

  • Shao J, Wang L (2016) Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika 103:175–187

    Article  MathSciNet  MATH  Google Scholar 

  • Song S, Ritov Y, Härdle W (2012) Bootstrap confidence bands and partial linear quantile regression. J Multivar Anal 107:244–262

    Article  MathSciNet  MATH  Google Scholar 

  • Sun J, Loader C (1994) Simultaneous confidence bands for linear regression and smoothing. Ann Probab 22:1328–1345

    MathSciNet  MATH  Google Scholar 

  • Sun L, Zhou Y (1998) Sequential confidence bands for densities under truncated and censored data. Stat Probab Lett 40:31–41

    Article  MathSciNet  MATH  Google Scholar 

  • Tang N, Zhao P, Zhu H (2014) Empirical likelihood for estimating equations with nonignorably missing data. Stat Sin 24:723–47

    MathSciNet  MATH  Google Scholar 

  • Uehara M, Kim JK (2018) Semiparametric response model with nonignorable nonresponse. Preprint. arXiv:1810.12519

  • Wandl H (1980) On kernel estimation of regression functions. Wissenschaftliche Sitzungen zur Stochastik (WSS-03), Berlin

  • Wang J, Cheng F, Yang L (2013) Smooth simultaneous confidence bands for cumulative distribution functions. J Nonparametr Stat 25:395–407

    Article  MathSciNet  MATH  Google Scholar 

  • Withers C, Nadarajah S (2012) Maximum modulus confidence bands. Stat Pap 53:811–819

    Google Scholar 

  • Wojdyla J, Szkutnik Z (2018) Nonparametric confidence bands in Wicksell’s problem. Stat Sin 28:93–113

    MathSciNet  MATH  Google Scholar 

  • Xia Y (1998) Bias-corrected confidence bands in nonparametric regression. J R Stat Soc Ser B Stat Methodol 60:797–811

    Article  MathSciNet  MATH  Google Scholar 

  • Yang F, Barber R (2019) Contraction and uniform convergence of isotonic regression. Electron J Stat 13:646–677

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan C, Hedeker D, Mermelstein R, Xie H (2020) A tractable method to account for high-dimensional nonignorable missing data in intensive longitudinal data. Stat Med 39:2589–2605

    Article  MathSciNet  Google Scholar 

  • Zhao J, Shao J (2015) Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. J Am Stat Assoc 110:1577–1590

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao P, Wang L, Shao J (2019) Empirical likelihood and Wilks phenomenon for data with nonignorable missing values. Scand J Stat 46:1003–1024

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou S, Wang D, Zhu J (2020) Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region. Stat Pap 61:1335–1346

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF Grant DMS-1916161 of Majid Mojirsheibani.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mojirsheibani.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

To prove our main results, we first state a number of lemmas.

Lemma 1

Let \({\widetilde{\pi }}_{{\widehat{\gamma }}}(x, y)\) be the estimator obtained from \({\widetilde{\pi }}_{\gamma }(x, y)\) upon replacing \(\gamma \) by any estimator \({\widehat{\gamma }}\) in (9). Then, under the conditions of Theorem 2, one has

$$\begin{aligned}&\sup _{x\in [0,1]}\, \max _{1\le i \le n} \left| \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}\right| \cdot \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}\nonumber \\&\quad = o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) \end{aligned}$$
(25)
$$\begin{aligned}&\sup _{x\in [0,1]}\, \max _{1\le i \le n} \left| \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\right| \cdot \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}\nonumber \\&\quad = {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n \lambda _n}}\bigg ) \end{aligned}$$
(26)

Lemma 2

Let \({\widetilde{m}}_{\pi ,n}(x)\) and \({\widehat{m}}_{n}(x)\) be as in (8) and (11), respectively. Then,

$$\begin{aligned} \sup _{x\in [0, 1]} \Big |{\widehat{m}}_{n}(x) - {\widetilde{m}}_{\pi ,n}(x)\Big |= & {} o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) + {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n \lambda _n}} \bigg ). \end{aligned}$$
(27)

To state our next lemma, we first need to define the following auxiliary quantities, which may be viewed as particular estimates of \(\nu ^2(x)\) defined in (14)

$$\begin{aligned} {\widetilde{\nu }}^2_{\pi }(x)= & {} \sum _{i=1}^n \, \bigg \{\left[ \frac{\Delta _i Y_i}{\pi _{\gamma }(X_i, Y_i)}+\varepsilon _i\right] ^2\, {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \bigg \} \Big / \sum _{i=1}^n {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \nonumber \\&- \big [{\widetilde{m}}_{\pi ,n}(x)\big ]^2 \end{aligned}$$
(28)
$$\begin{aligned} {\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x)= & {} \sum _{i=1}^n \, \bigg \{\left[ \frac{\Delta _i Y_i}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}+\varepsilon _i\right] ^2\, {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \bigg \} \Big / \sum _{i=1}^n {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \nonumber \\&- \big [{\widetilde{m}}_{{\widetilde{\pi }},n}(x)\big ]^2, \end{aligned}$$
(29)

where \({\widetilde{\pi }}_{\gamma }(x, y)\) is as in (9) and

$$\begin{aligned} {\widetilde{m}}_{{\widetilde{\pi }},n}(x)= \sum _{i=1}^n \, \left\{ \left[ \frac{\Delta _i Y_i}{{\widetilde{\pi }}_{\gamma }(X_i,Y_i)}+\varepsilon _i\right] \, {\mathcal {K}}\left( \frac{x-X_i}{h_n}\right) \right\} \Big /\,\sum _{i=1}^n {\mathcal {K}}\left( \frac{x-X_i}{h_n}\right) . \end{aligned}$$
(30)

Lemma 3

Let \({\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)\), \(\nu ^2(x)\), \({\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x)\), and \({\widetilde{\nu }}^2_{\pi }(x)\) be as in (13), (14), (29), and (28), respectively. Then

$$\begin{aligned} \sup _{x\in [0, 1]} \Big |{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) \Big |= & {} o_p\big (1/\sqrt{n h_n \log n}\,\big ), \end{aligned}$$
(31)
$$\begin{aligned} \sup _{x\in [0, 1]} \Big |{\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{\pi }(x) \Big |= & {} {{\mathcal {O}}}_p \big (\sqrt{(n \lambda _n)^{-1}\log n} \big ), \end{aligned}$$
(32)
$$\begin{aligned} \sup _{x\in [0, 1]} \Big |{\widetilde{\nu }}^2_{\pi }(x) - \nu ^2(x) \Big |= & {} {{\mathcal {O}}}_p \big (\sqrt{(n h_n)^{-1}\log n}\bigg ). \end{aligned}$$
(33)

Proof of Theorem 2

To prove Theorem 2, we first consider the following simple decomposition

$$\begin{aligned} \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}~ \bigg | {\widehat{m}}_n(x)-m(x)\bigg |= & {} \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{{\widetilde{\nu }}^2_{\pi }(x)}}~ \bigg | {\widetilde{m}}_{\pi ,n}(x)-m(x)\bigg | \,+\, {{\mathcal {R}}}_n \nonumber \\ \end{aligned}$$
(34)

where the remainder term, \({{\mathcal {R}}}_n\), is given by

$$\begin{aligned} {{\mathcal {R}}}_n&= \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}~ \bigg | {\widehat{m}}_n(x)-m(x)\bigg | - \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{ {\widetilde{\nu }}^2_{\pi }(x)}}~ \bigg | {\widetilde{m}}_{\pi ,n}(x)-m(x)\bigg | \nonumber \\&\le \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}~ \bigg | {\widehat{m}}_n(x)-{\widetilde{m}}_{\pi ,n}(x)\bigg |\nonumber \\&\quad + \sup _{x\in [0,1]}\, \sqrt{\frac{{\widetilde{\nu }}^2_{\pi }(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}\, \sqrt{\frac{f_n(x)}{{\widetilde{\nu }}^2_{\pi }(x)}}~ \bigg | {\widetilde{m}}_{\pi ,n}(x) - m(x)\bigg | \nonumber \\&\quad -\sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{{\widetilde{\nu }}^2_{\pi }(x)}}~ \bigg | {\widetilde{m}}_{\pi ,n}(x) - m(x)\bigg | \nonumber \\&\le \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}~ \bigg | {\widehat{m}}_n(x)-{\widetilde{m}}_{\pi ,n}(x)\bigg | \nonumber \\&\quad + \left[ \sup _{x\in [0,1]}\, \sqrt{\frac{{\widetilde{\nu }}^2_{\pi }(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}-1\right] \cdot \sup _{x\in [0,1]}\, \sqrt{\frac{f_n(x)}{{\widetilde{\nu }}^2_{\pi }(x)}}~ \bigg | {\widetilde{m}}_{\pi ,n}(x) - m(x)\bigg | \nonumber \\&=: {{\mathcal {R}}}_n(i) + {{\mathcal {R}}}_n(ii) \end{aligned}$$
(35)

To deal with the first term on the r.h.s of (34), first observe that \({\widetilde{m}}_{\pi ,n}(x)\) and \({\widetilde{\nu }}_{\pi ,n}^2(x)\) that appear in this supremum term are, respectively, the kernel regression estimator of \(E(Y^*|X=x)\) and the kernel estimator of the conditional variance of \(Y^*\) based on the iid “data” \((X_i, Y^*_i),\) \(i=1,\ldots ,n\), where \(Y^*=\Delta Y\big /\pi _{\gamma }(X,Y) + \varepsilon \); see (12). Furthermore, when assumptions (A), (F), and (G) hold, we have \(P\{B_L\le Y^* \le B^U\}=1\) for finite constants \(B_L\) and \(B^U\). In fact, one can take \(B_L=\pi ^{-1}_{\mathrm{min}}\min (0,B_1)+a_0\)  and \(B^U=\pi ^{-1}_{\mathrm{min}}B_2+b_0\), where \(B_1\) and \(B_2\) are the constants in Assumption (A), the term \(\pi _{\mathrm{min}}\) is as in assumption (F), and \(a_0\) and \(b_0\) are given in Assumption (G). Therefore, when Assumption (A) holds for the distribution of (XY) then, in view of assumptions (F) and (G), it also holds for the distribution of \((X,Y^*)\) with \(B_1\) and \(B_2\) replaced by \(B_L\) and \(B^U\). Additionally, it is not hard to show that, in view of Assumption (F), if \(\nu _0^2(x) := E[(Y-m(X))^2|X=x]\) satisfies Assumption (C) then so does \(\nu ^2(x)\). Hence, in view of Theorem 1, and under assumptions (A), (B), (C), (D\('\)), (E\('\)), (F), and (G), the first term on the r.h.s of (34) satisfies

$$\begin{aligned}&P\left\{ \sqrt{2 \delta \log n}\left( \sqrt{\frac{n h_n}{c_K}}\, \sup _{x\in [0,1]} \sqrt{\frac{f_n(x)}{{\widetilde{\nu }}^2_{\pi }(x)}}\, \Big |{\widetilde{m}}_{\pi ,n}(x)-m(x)\Big |- \varphi (n)\right) \le u\right\} \nonumber \\&\quad \rightarrow \exp \left( -2e^{-u}\right) \end{aligned}$$
(36)

where \(c_K=\int K^2(t)\,dt\) and \(\varphi (n)\) is as in (15). Now to finish the proof of Theorem 2, we have to show that \(\sqrt{n h_n \log n}\,{{\mathcal {R}}}_n\rightarrow ^p 0\), as \(n\rightarrow \infty \). However, by (35), it is sufficient to show that \(\sqrt{n h_n \log n}\,\big |{{\mathcal {R}}}_n(i)\big |\rightarrow ^p 0\) and \(\sqrt{n h_n \log n}\,\big |{{\mathcal {R}}}_n(ii)\big |\rightarrow ^p 0\). To this end, first note that (36) yields

$$\begin{aligned} \sup _{x\in [0,1]} \sqrt{\frac{f_n(x)}{{\widetilde{\nu }}^2_{\pi }(x)}}\, \Big | {\widetilde{m}}_{\pi ,n}(x) - m(x)\Big |\,=\,{{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n h_n}}\bigg ). \end{aligned}$$
(37)

We also note that

$$\begin{aligned} \left| \sup _{x\in [0,1]}\, \sqrt{\frac{{\widetilde{\nu }}^2_{\pi }(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}-1\right|\le & {} \sup _{x\in [0,1]}\left| \, \sqrt{\frac{{\widetilde{\nu }}^2_{\pi }(x)}{ {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}}-1\right| ~\le \, \sup _{x\in [0,1]}\frac{\big |{\widetilde{\nu }}^2_{\pi }(x)- {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)\big |}{{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)}. \end{aligned}$$
(38)

However, in view of (32) and (31),

$$\begin{aligned} \sup _{x\in [0,1]}\big |{\widetilde{\nu }}^2_{\pi }(x)- {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)\big |= & {} o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) + {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n \lambda _n}} \bigg ). \end{aligned}$$
(39)

Also, observe that

$$\begin{aligned} \inf _{x\in [0,1]} {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)\ge & {} -\sup _{x\in [0, 1]} \big |{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) \big | - \sup _{x\in [0, 1]} \big |{\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{\pi }(x) \big | \nonumber \\&- \sup _{x\in [0, 1]} \Big |{\widetilde{\nu }}^2_{\pi }(x) - \nu ^2(x) \Big | + \inf _{x\in [0,1]}\nu ^2(x) \end{aligned}$$
(40)
$$\begin{aligned} \inf _{x\in [0,1]} {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x)\le & {} \sup _{x\in [0, 1]} \big |{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) \big | + \sup _{x\in [0, 1]} \big |{\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{\pi }(x) \big | \nonumber \\&+ \sup _{x\in [0, 1]} \Big |{\widetilde{\nu }}^2_{\pi }(x) - \nu ^2(x) \Big | + \inf _{x\in [0,1]}\nu ^2(x). \end{aligned}$$
(41)

Now, taking the limit, as \(n\rightarrow \infty \), of both sides of (40) and (41) and taking into account Lemma 3, we arrive at

$$\begin{aligned} 0< \lim _{n\rightarrow \infty } \inf _{x\in [0,1]} {\widehat{\nu }}^2_{{\widetilde{\pi }}}(x) < \infty . \end{aligned}$$
(42)

This together with (39), (38), and (37) yields

$$\begin{aligned} |{{\mathcal {R}}}_n(ii)| \,=\, {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n h_n}}\bigg ) \left[ o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) + {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n \lambda _n}} \bigg ) \right] , \end{aligned}$$

from which we arrive at

$$\begin{aligned} \sqrt{n h_n \log n}\,\big |{{\mathcal {R}}}_n(ii)\big | \,=\, o_p \bigg (\sqrt{\frac{\log n}{n h_n}}\,\bigg ) + {{\mathcal {O}}}_p \left( \frac{(\log n)^{3/2}}{\sqrt{n \lambda _n}}\right) \,=\, o_p(1). \end{aligned}$$

To deal with the term \({{\mathcal {R}}}_n(i)\) in (35), first note that by Lemma 2

$$\begin{aligned}&\sqrt{n h_n \log n}\, \sup _{x\in [0,1]}\, \Big | {\widehat{m}}_n(x)-{\widetilde{m}}_{\pi ,n}(x)\Big | \\&\quad = \sqrt{n h_n \log n}\,\left[ {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n \lambda _n}} \bigg ) + o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) \right] \\&\quad = {{\mathcal {O}}}_p\Big (\sqrt{n^{\beta -\delta }\, (\log n)^{3/2}}\Big ) + o_p(1) = o_p(1), \end{aligned}$$

where we have used the fact that \(\beta <\delta \). Furthermore, since by (42), \( \sup _{x\in [0,1]}\, \big | f_n(x)/ {\widehat{\nu }}^2_{{\widetilde{\pi }}} (x)\big | \le \, \big \{\sup _{x\in [0,1]}\, \big | f_n(x)-f(x)\big |+\sup _{x\in [0,1]}f(x)\big \}\big / \inf _{x\in [0,1]}{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x) \,=\, {{\mathcal {O}}}_p(1), \) one finds

$$\begin{aligned} \sqrt{n h_n \log n\,}\,\big |{{\mathcal {R}}}_n(i)\big | = o_p(1). \end{aligned}$$

This completes the proof of Theorem 2. \(\square \)

Proof of Theorem 3

The proof is similar to that of Theorem 2, but uses a result of Konakov and Piterbarg (1984, Theorem 1.1) instead of that of Liero (1982). \(\square \)

Proof of Lemma 1

We start by defining the following quantities

$$\begin{aligned} {\widehat{\phi }}_1(x)= & {} \sum _{j=1}^n \big [1-(\Delta _j+\varepsilon _j)\big ] {\mathcal {K}}\left( \frac{x - X_j}{\lambda _n}\right) \Big /\,\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{\lambda _n}\right) \end{aligned}$$
(43)
$$\begin{aligned} {\widehat{\phi }}_2(x)= & {} \sum _{j=1}^n (\Delta _j+\varepsilon _j)\exp \{{\widehat{\gamma }}Y_j\}\, {\mathcal {K}}\left( \frac{x - X_j}{\lambda _n}\right) \Big /\,\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{\lambda _n}\right) \end{aligned}$$
(44)
$$\begin{aligned} {\widetilde{\phi }}_2(x)= & {} \sum _{j=1}^n (\Delta _j+\varepsilon _j)\exp \{\gamma Y_j\}\, {\mathcal {K}}\left( \frac{x - X_j}{\lambda _n}\right) \Big / \,\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{\lambda _n}\right) . \end{aligned}$$
(45)
$$\begin{aligned} \phi _2(x)= & {} E\big [(\Delta +\varepsilon )\exp \{\gamma Y\}\big |X=x\big ]. \end{aligned}$$
(46)
$$\begin{aligned} \phi _1(x)= & {} E\big [1-(\Delta +\varepsilon )\big |X=x\big ]. \end{aligned}$$
(47)

Then it is straightforward to see

$$\begin{aligned}&\left| \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(x, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(x, Y_i)}\right| \nonumber \\&\quad =\left| \frac{-\exp \{{\widehat{\gamma }}Y_i\} {\widehat{\phi }}_1(x)}{{\widehat{\phi }}_2(x)} \cdot \frac{{\widehat{\phi }}_2(x)-{\widetilde{\phi }}_2(x)}{{\widetilde{\phi }}_2(x)} + \frac{\big [\exp \{{\widehat{\gamma }}Y_i\} - \exp \{\gamma Y_i\}\big ]\, {\widehat{\phi }}_1(x)}{{\widetilde{\phi }}_2(x)}\right| \nonumber \\&\quad \le \left| \frac{1}{{\widetilde{\phi }}_2(x)}\right| \,\left[ \left| \frac{\exp \{{\widehat{\gamma }}Y_i\} {\widehat{\phi }}_1(x)}{{\widehat{\phi }}_2(x)}\right| \cdot \left| {\widehat{\phi }}_2(x) -{\widetilde{\phi }}_2(x)\right| \right. \nonumber \\&\quad \left. + \left| \big [\exp \{{\widehat{\gamma }}Y_i\} - \exp \{\gamma Y_i\}\big ] {\widehat{\phi }}_1(x) \right| \right] ~~~~~ \end{aligned}$$
(48)

Now, put \(c :=\max (|B_1|, |B_2|)\), where \(B_1\) and \(B_2\) are as in Assumption (A), and observe that a one-term Taylor expansion gives

$$\begin{aligned} \left| {\widehat{\phi }}_2(x)-{\widetilde{\phi }}_2(x)\right|= & {} \left| \frac{\sum _{j=1}^n (\Delta _j+\varepsilon _j) \big [\exp \{{\widehat{\gamma }}Y_j\}-\exp \{\gamma Y_j\}\big ]\, {\mathcal {K}}\left( \frac{x - X_j}{\lambda _n}\right) }{\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{\lambda _n}\right) }\right| \nonumber \\\le & {} \left| \frac{c\sum _{j=1}^n (1+|\varepsilon _j|)|{\widehat{\gamma }}-\gamma |\exp \big \{|\gamma ^*-\gamma |c+ \gamma c\big \} \, {\mathcal {K}}\left( \frac{x - X_j}{\lambda _n}\right) }{\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{\lambda _n}\right) }\right| ,\nonumber \\[2pt]&(\gamma ^* \text{ is } \text{ a } \text{ point } \text{ on } \text{ the } \text{ interior } \text{ of } \text{ the } \text{ line } \text{ joining } {\widehat{\gamma }} \text{ and } \gamma )\nonumber \\\le & {} c\,\big (1+|a_0|\vee b_0\big ) |{\widehat{\gamma }}-\gamma |\exp \big \{ |\gamma ^*- \gamma |c+\gamma c\big \}\nonumber \\&(\text{ where } a_0 \text{ and } b_0 \text{ are } \text{ as } \text{ in } \text{ Assumption } \text{(G) })\nonumber \\\le & {} c_0 |{\widehat{\gamma }}-\gamma |\exp \big \{c\big [\gamma +|{\widehat{\gamma }} - \gamma |c\big \},\nonumber \\&\quad \text{ where } c_0 = c\,\big (1+|a_0|\vee b_0\big ), \nonumber \\= & {} o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) \cdot {{\mathcal {O}}}_p \left( 1\right) , \end{aligned}$$
(49)

where the bound does not depend on x. Similarly, we note that

$$\begin{aligned}&\bigg |\Big [\exp \{{\widehat{\gamma }}Y_i\} - \exp \{\gamma Y_i\}\Big ]\, {\widehat{\phi }}_1(x)\bigg | \nonumber \\&\quad \le \Big |\exp \{{\widehat{\gamma }}Y_i\}-\exp \{\gamma Y_i\}\Big |\,\frac{\sum _{j=1}^n \big |1-(\Delta _j+\varepsilon _j)\big | \, {\mathcal {K}}\left( \frac{x - X_j}{\lambda _n}\right) }{\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{\lambda _n}\right) }\nonumber \\&\quad \le \big (2+|a_0|\vee b_0\big )c\,|{\widehat{\gamma }}-\gamma |\exp \big \{ c\big [\gamma +|{\widehat{\gamma }}- \gamma |\big ]\big \} \nonumber \\&\quad = o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) \cdot {{\mathcal {O}}}_p \left( 1\right) , \end{aligned}$$
(50)

where the bound in (50) does not depend on the particular x or \(Y_i\). Now, observe that

$$\begin{aligned}&\sup _{x\in [0,1]}\, \max _{1\le i \le n} \left| \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}\right| \cdot \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \} \nonumber \\&\quad \le \max _{1\le i \le n} \sup _{-h_n\le \, x\, \le 1+A h_n} \Bigg \{\left| \frac{1}{{\widetilde{\phi }}_2(x)}\right| \cdot \left[ \Bigg | \frac{\exp \{{\widehat{\gamma }}Y_i\}\,{\widehat{\phi }}_1(x)}{{\widehat{\phi }}_2(x)}\right| \cdot \left| {\widehat{\phi }}_2(x)-{\widetilde{\phi }}_2(x)\right| \nonumber \\&\qquad + \Big |\big [\exp \{{\widehat{\gamma }}Y_i\} - \exp \{\gamma Y_i\}\big ]\, {\widehat{\phi }}_1(x)\Big |\Bigg ]\Bigg \}. \end{aligned}$$
(51)

To deal with the right side of (51), first note that

$$\begin{aligned}&\sup _{-h_n\, \le x\, \le 1+A h_n} \left| \frac{\exp \{{\widehat{\gamma }}Y_i\}\,{\widehat{\phi }}_1(x)}{{\widehat{\phi }}_2(x)}\right| \\&\quad \le \sup _{-h_n\le x \le 1+A h_n} \bigg \{\bigg [ \left| \big [\exp \{{\widehat{\gamma }}Y_i\} - \exp \{\gamma Y_i\}\big ]\, {\widehat{\phi }}_1(x) \right| + \left| \big [{\widehat{\phi }}_1(x) - \phi _1(x)\big ] \exp \{\gamma Y_i\}\right| \nonumber \\&\qquad + \big |\phi _1(x) \exp \{\gamma Y_i\}\big |\bigg ] \Big /\, \left| {\widehat{\phi }}_2(x) \right| \bigg \} \nonumber \end{aligned}$$
(52)

Now, since the bound in (50) does not depend on any particular x or \(Y_i\), one finds

$$\begin{aligned} \sup _{x\in [0,1]}\, \max _{1\le i \le n} \left| \big [\exp \{{\widehat{\gamma }}Y_i\} - \exp \{\gamma Y_i\}\big ]\, {\widehat{\phi }}_1(x) \right|= & {} o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ). \end{aligned}$$
(53)

Next, let n be large enough so that \(A h_n <\epsilon \), where \(\epsilon \) is as in assumption (B), and observe that by the results of Mack and Silverman (1982; Theorem B), one has

$$\begin{aligned} \sup _{x\in [0,1]}\, \max _{1\le i \le n} \left| \big [{\widehat{\phi }}_1(x) -\phi _1(x)\big ] \exp \{\gamma Y_i\}\right|\le & {} {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n \lambda _n}} \bigg )\times \exp \{\gamma c\} \nonumber \\= & {} {{\mathcal {O}}}_p \bigg (\sqrt{\frac{\log n}{n \lambda _n}} \bigg ), \end{aligned}$$
(54)

where \(c :=\max (|B_1|, |B_2|)\) as before, and \(B_1\) and \(B_2\) are as in assumption (A). Furthermore,

$$\begin{aligned} \sup _{x\in [0,1]}\, \max _{1\le i \le n} \left| \phi _1(x) \exp \{\gamma Y_i\}\right| ~\le ~ (1-\pi _{\mathrm{min}})\exp \{\gamma c\} \,=~ {{\mathcal {O}}}(1). \end{aligned}$$
(55)

We also need to deal with the infimum of the term \(\big |{\widehat{\phi }}_2(x) \big |\) that appears in the denominator of (52). To this end, we first note that \(\big |{\widehat{\phi }}_2(x) \big |\) can be upper- and lower-bounded as follows

$$\begin{aligned}&\left| \phi _2(x)\right| - \left| {\widetilde{\phi }}_2(x) - \phi _2(x)\right| -\left| {\widehat{\phi }}_2(x)-{\widetilde{\phi }}_2(x)\right| \\&\quad \le \big |{\widehat{\phi }}_2(x)\big | \le \left| {\widehat{\phi }}_2(x)-{\widetilde{\phi }}_2(x)\right| + \left| {\widetilde{\phi }}_2(x) - \phi _2(x)\right| + \left| \phi _2(x)\right| \end{aligned}$$

Taking the infimum over \(x\in [-h_n,\, 1+A h_n]\), we find  \(\inf _x\left| \phi _2(x)\right| - \sup _x\big |{\widetilde{\phi }}_2(x) - \phi _2(x)\big | -\sup _x\big |{\widehat{\phi }}_2(x) -{\widetilde{\phi }}_2(x)\big |\le ~\inf _x \big |{\widehat{\phi }}_2(x)\big | \,\le \, \sup _x\big |{\widehat{\phi }}_2(x)-{\widetilde{\phi }}_2(x)\big |+ \sup _x\big |{\widetilde{\phi }}_2(x) - \phi _2(x)\big |+ \sup _x\big |\phi _2(x)\big |. \) Therefore, taking the limit as \(n\rightarrow \infty \), one finds

$$\begin{aligned} 0 < \varphi _0 \le \lim _{n\rightarrow \infty } \inf _{-h_n\, \le x\, \le 1+A h_n} \big |{\widehat{\phi }}_2(x)\big |~ \le ~ \exp \{\gamma c\}, \end{aligned}$$
(56)

for a positive constant \(\varphi _0\) not depending on n. Here, (56) follows from (49) in conjunction with Theorem B of Mack and Silverman (1982). Furthermore, similar (and in fact easier) arguments can also be used to show that

$$\begin{aligned} 0 < \varphi _0 \le \lim _{n\rightarrow \infty } \inf _{-h_n\, \le x\, \le 1+A h_n} \big |{\widetilde{\phi }}_2(x)\big | ~\le ~ \exp \{\gamma c\}. \end{aligned}$$
(57)

Now (25) follows from (57), (56), (55), (54), (53), (51), and (48). The proof of (26) is very similar to (and, in fact, easier than) that of (25) and therefore will not be given. \(\square \)

Proof of Lemma 2

Let \({\widetilde{m}}_{{\widetilde{\pi }},n}(x)\) be as in (30), and note that

$$\begin{aligned}&\Big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\Big |\\&\quad = \left| \frac{ \sum _{j=1}^n (\Delta _j+\varepsilon _j)Y_j \left[ \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\right] {\mathcal {K}}\left( \frac{x - X_j}{h_n}\right) }{\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{h_n}\right) }\right| \\&\quad \le \max _{1\le i \le n}\left\{ \left| \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\right| \, \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}\right\} \\&\qquad \times \left[ \sum _{j=1}^n \Big |(\Delta _j+\varepsilon _j)Y_j\Big |{\mathcal {K}} \left( \frac{x - X_j}{h_n}\right) \Big /\,\sum _{j=1}^n {\mathcal {K}}\left( \frac{x- X_j}{h_n}\right) \right] \\&\quad \le c_2 \max _{1\le i \le n}\left\{ \left| \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\right| \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}\right\} ,~ \end{aligned}$$

where \(c_2\) is a positive constant not depending on n. Therefore, in view of (26),

$$\begin{aligned} \sup _{x\in [0,1]}\,\Big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\Big | ~=~ {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n \lambda _n}}\bigg ). \end{aligned}$$
(58)

Similarly, one has

$$\begin{aligned}&\Big |{\widehat{m}}_{n}(x) - {\widetilde{m}}_{{\widetilde{\pi }},n}(x)\Big | \\&\quad = \left| \frac{ \sum _{j=1}^n (\Delta _j+\varepsilon _j)Y_j \left[ \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_j, Y_j)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_j, Y_j)}\right] {\mathcal {K}}\left( \frac{x - X_j}{h_n}\right) }{\sum _{j=1}^n {\mathcal {K}} \left( \frac{x - X_j}{h_n}\right) }\right| \\&\quad \le c_2 \max _{1\le i \le n}\left\{ \left| \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}\right| \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}\right\} ,~ \end{aligned}$$

which, together with (25), yields

$$\begin{aligned} \sup _{x\in [0,1]}\, \Big |{\widehat{m}}_{n}(x) - {\widetilde{m}}_{{\widetilde{\pi }},n}(x)\Big | = o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ). \end{aligned}$$
(59)

The proof of Lemma 2 now follows from (58) and (59) and the fact that \( \big |{\widehat{m}}_{n}(x) - {\widetilde{m}}_{\pi ,n}(x)\big | \le \big |{\widehat{m}}_{n}(x) - {\widetilde{m}}_{{\widetilde{\pi }},n}(x)\big | + \big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\big |. \) \(\square \)

Proof of Lemma 3

We start with the proof of (31). First observe that

$$\begin{aligned}&\Big |{\widehat{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) \Big |\nonumber \\&\quad \le \left| \left[ \sum _{i=1}^n \Delta _i Y_i^2 \left[ \frac{1}{[{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)]^2} - \frac{1}{[{\widetilde{\pi }}_{\gamma }(X_i, Y_i)]^2}\right] \right. \right. \nonumber \\&\qquad \left. \left. \times {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right] \Big /\sum _{i=1}^n{{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right| \nonumber \\&\qquad + 2 \left| \left[ \sum _{i=1}^n\varepsilon _i \, \Delta _i Y_i \left[ \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}\right] \right. \right. \nonumber \\&\qquad \left. \left. \times {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right] \Big / \sum _{i=1}^n{{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right| \nonumber \\&\qquad +\Big |\big ({\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widehat{m}}_{n}(x)\big )\big ({\widetilde{m}}_{{\widetilde{\pi }},n}(x) + {\widehat{m}}_{n}(x)\big )\Big |\nonumber \\&\quad =: \big |U_{n,1}(x)\big | + \big |U_{n,2}(x)\big | + \big |U_{n,3}(x)\big |. \end{aligned}$$
(60)

However, we have

$$\begin{aligned} \big |U_{n,1}(x)\big |\le & {} r_n(x) \cdot \max _{1\le i \le n} \Bigg [ \Bigg | \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}\Bigg |\\&\times \Bigg \{\Bigg | \frac{1}{{\widetilde{\pi }}_{{\widehat{\gamma }}}(X_i, Y_i)} - \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)}\Bigg |\\&+ 2\,\Bigg |\frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\Bigg |\\&+2\,\Bigg |\frac{1}{\pi _{\gamma }(X_i, Y_i)}\Bigg |\Bigg \} \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}\Bigg ], \end{aligned}$$

where \(r_n(x) =\sum _{i=1}^n \Delta _i Y^2_i\, {{\mathcal {K}}}((x-X_i)/h_n) / \sum _{i=1}^n {{\mathcal {K}}}((x-X_i)/h_n)\le (|B_1|\vee |B_2|)^2\), where \(B_1\) and \(B_2\) are as in assumption (A). Therefore, in view of (25) and (26), we obtain

$$\begin{aligned} \sup _{x\in [0,1]}\,\big |U_{n,1}(x)\big |= & {} o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) \bigg \{o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) +{{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n\lambda _n}}\bigg ) + {{\mathcal {O}}}_p(1)\bigg \} \nonumber \\= & {} o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ). \end{aligned}$$

Similarly, we have

$$\begin{aligned} \sup _{x\in [0,1]} \,\big |U_{n,2}(x)\big | =o_p\big (1/\sqrt{n h_n \log n}\big ). \end{aligned}$$

Next, to deal with the term \(\big |U_{n,3}(x)\big |\) in (60), we observe that \(\big |U_{n,3}(x)\big | \le \big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widehat{m}}_{n}(x)\big |\times \big \{ \big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widehat{m}}_{n}(x)\big | +2 \big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\big | +2 \big |{\widetilde{m}}_{\pi ,n}(x) - m(x)\big | +2|m(x)|\big \}\). Consequently, in view of (58) and (59) and the result of Mack and Silverman (1982, Theorem B), we get

$$\begin{aligned}&\sup _{x\in [0,1]}\,\big |U_{n,3}(x)\big | \\&\quad = o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) \Bigg \{o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ) + {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n\lambda _n}}\bigg ) + {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n h_n}}\bigg ) + {{\mathcal {O}}}_p(1)\Bigg \} \nonumber \\&\quad = o_p\bigg (\frac{1}{\sqrt{n h_n \log n}}\bigg ). \end{aligned}$$

Now, (31) follows from the above bounds together with (60). The proof of (32) is similar and goes as follows.

$$\begin{aligned}&\Big |{\widetilde{\nu }}^2_{{\widetilde{\pi }}}(x) - {\widetilde{\nu }}^2_{\pi }(x) \Big | \nonumber \\&\quad \le \left| \left[ \sum _{i=1}^n \Delta _i Y_i^2 \left[ \frac{1}{[{\widetilde{\pi }}_{\gamma }(X_i, Y_i)]^2} - \frac{1}{[\pi _{\gamma }(X_i, Y_i)]^2}\right] \right. \right. \nonumber \\&\qquad \left. \left. \times {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right] \Big /\sum _{i=1}^n{{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right| \nonumber \\&\qquad + 2 \left| \left[ \sum _{i=1}^n\varepsilon _i \, \Delta _i Y_i \left[ \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\right] \right. \right. \nonumber \\&\qquad \left. \left. \times {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right] \Big / \sum _{i=1}^n {{\mathcal {K}}}\left( \frac{x-X_i}{h_n}\right) \right| \nonumber \\ \nonumber \\&\qquad +\Big |\big ({\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\big )\big ({\widetilde{m}}_{{\widetilde{\pi }},n}(x) + {\widetilde{m}}_{\pi ,n}(x)\big )\Big |\nonumber \\&\quad =: \big |T_{n,1}(x)\big | + \big |T_{n,2}(x)\big | + \big |T_{n,3}(x)\big |. \end{aligned}$$
(61)

But

$$\begin{aligned} \big |T_{n,1}(x)\big |\le & {} c_3\max _{1\le i \le n} \Bigg [ \Bigg | \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\Bigg |\cdot \Bigg \{\Bigg | \frac{1}{{\widetilde{\pi }}_{\gamma }(X_i, Y_i)} - \frac{1}{\pi _{\gamma }(X_i, Y_i)}\Bigg |\\&+ 2\,\bigg |\frac{1}{\pi _{\gamma }(X_i, Y_i)}\bigg |\Bigg \}\Bigg ] \mathbf{I}\big \{x-Ah_n \le X_i \le x+A h_n\big \}, \end{aligned}$$

where \(c_3\) is a positive constant not depending on n. Therefore, by (26) and the second part of assumption (F), we have

$$\begin{aligned} \sup _{x\in [0,1]}\,\big |T_{n,1}(x)\big |= & {} {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n\lambda _n}}\bigg ) {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n\lambda _n}}\bigg ) + \, {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n\lambda _n}}\bigg ) {{\mathcal {O}}}(1) \\= & {} {{\mathcal {O}}}_p\bigg (\sqrt{\frac{\log n}{n\lambda _n}} \bigg ). \end{aligned}$$

Similarly, one has \(\sup _{x\in [0,1]}\,\big |T_{n,2}(x)\big |= {{\mathcal {O}}}_p \left( \sqrt{\log n/(n\lambda _n)}\right) \). Furthermore, since

$$\begin{aligned} \big |T_{n,2}(x)\big | \le \big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\big |\Big [\big |{\widetilde{m}}_{{\widetilde{\pi }},n}(x) - {\widetilde{m}}_{\pi ,n}(x)\big | + 2\,\big |{\widetilde{m}}_{\pi ,n}(x)\big |\Big ], \end{aligned}$$

one finds (in view of (58)) \( \sup _{x\in [0,1]}\,\big |T_{n,2}(x)\big | = {{\mathcal {O}}}_p \left( \sqrt{\log n/(n\lambda _n)}\right) . \) Now, (32) follows from (61) together with the above bounds. The proof of (33) is straightforward and, in fact, easier than those of (32) and (31), and hence will not be given. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojirsheibani, M. On the maximal deviation of kernel regression estimators with NMAR response variables. Stat Papers 63, 1677–1705 (2022). https://doi.org/10.1007/s00362-022-01293-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01293-0

Keywords

Navigation