Skip to main content
Log in

Tests for the explanatory power of latent factors

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose herein a factor-augmented semi-varying coefficient model and discuss whether the extracted factors have significant explanatory power. We first use Principal Component Analysis (PCA) to estimate the model and then develop the PCA-based Wald test. We find that the PCA-based Wald test statistic is asymptotically chi-squared distributed with degrees of freedom equal to the unknown number of factors. To avoid estimating the degrees of freedom, we then use Common Correlated Effects (CCE) to estimate the model and develop the CCE-based Wald test. However, as opposed to the PCA-based estimator, the CCE-based estimator of loadings is ambiguous in the sense that the estimation depends on the dimensions of factors and predictors and the estimator can even be inconsistent. If we construct the Wald test based on the CCE-based estimator, the test lacks power. We overcome these difficulties and construct a powerful CCE-based Wald test that is immune to factor-number uncertainty. In addition to the two Wald tests, a new CCE-based goodness-of-fit test is also proposed. The test is irrelevant to the unknown number of factors and spares us the work of estimating asymptotic covariance matrix. Finally, three empirical examples are provided to demonstrate the usefulness of the tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

The author sincerely thanks the editor and three anonymous referees for their careful and patient reviews and constructive suggestions. Chen’s work is supported by Chongqing Key Laboratory of Social Economic and Applied Statistics under the Grant No. KFJJ2019101, and the Mathematical Statistics Team of Chongqing Technology and Business University (ZDPTTD201906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of theorems

Appendix: Proofs of theorems

To avoid unnecessary repetitions, we first state a unified result in Lemma 1, which asserts that, for any matrix \({\mathbf {Q}}_{t}\) satisfying some regularities, \({\mathbf {W}}_{j}(u)\) in (7.1) converges to its expectation in probability. Here, \({\mathbf {Q}}_{t}\) could be, for example, \({\mathbf {X}}_{t}{\mathbf {X}}^{\top }_{t}\) and \({\mathbf {X}}_{t}\mathbf {{\overline{Z}}}^{\top }_{t}\) that will appear in Lemma 2.

Lemma 1

Let \(U_{t}\) be univariate and \({\mathbf {Q}}_{t}\) be any matrix of finite dimensions. They satisfy following conditions:

  1. 1.

    Each (lk)th element \(Q_{t,lk}\) of \({\mathbf {Q}}_{t}\) and \(U_{t}\) are strictly stationary; \(U_{t}\) has bounded density f(u) with compact support.

  2. 2.

    The \(\alpha \)-mixing coefficients \(\alpha (m)\) of \(\{\left( Q_{t,lk},U_{t}\right) : t\ge 1\}\) satisfy \(\sum _{m=1}^{\infty }m^{b}\left[ \alpha (m)\right] ^{\delta /(2+\delta )}<\infty \) where \(b>2+\delta ,\,\delta >0\).

  3. 3.

    \(\mathrm {E}(\left| Q_{t,lk}\right| ^{2+\delta })<\infty \), \(\mathrm {E}(\vert Q_{t,lk}Q_{t+m,lk}\vert )<\infty \) for any t and any m.

  4. 4.

    For kernel function k(u), \(\mu _{j}=\int u^{j}k(u)\mathrm {d}u\) and \(\nu _{j}=\int u^{j}k^{2}(u)\mathrm {d}u\) exist for \(j\le 4\).

Define

$$\begin{aligned} {\mathbf {W}}_{j}(u)=\frac{1}{T}\sum \limits _{t=1}^{T} {\mathbf {Q}}_{t}\left( \frac{U_{t}-u}{h}\right) ^{j}k_{h}(U_{t}-u) \end{aligned}$$
(7.1)

then we have

$$\begin{aligned}&\mathrm {E}({\mathbf {W}}_{j}(u)) =f(u)\mu _{j}\mathrm {E}({\mathbf {Q}}_{t}|U_{t}=u)(1+O(h^\delta )) \end{aligned}$$
(7.2)
$$\begin{aligned}&Th{{\mathrm {Var}}}\left[ {\mathbf {W}}_{j}(u)\right] = O(1) \end{aligned}$$
(7.3)

where \(\delta =2\) if \(j=0,2\); \(\delta =1\) if \(j=1\).

Proof Firstly, by change of variables and Taylor expansion, we have

$$\begin{aligned} \mathrm {E}({\mathbf {W}}_{j}(u))= & {} \mathrm {E}\left( \mathrm {E}({\mathbf {Q}}_{t}|U_{t})\left( \frac{U_{t}-u}{h}\right) ^{j}k_{h}(U_{t}-u)\right) \nonumber \\= & {} \int \mathrm {E}({\mathbf {Q}}_{t}|s)\left( \frac{s-u}{h}\right) ^{j}\frac{1}{h}k\left( \frac{s-u}{h}\right) f(s)\mathrm {d}s\nonumber \\= & {} \int \mathrm {E}({\mathbf {Q}}_{t}|u)(1+O(h))x^{j}k(x)[f(u)+f^\prime (u)xh+O(h^2)]\mathrm {d}x\nonumber \\= & {} f(u)\mu _{j}\mathrm {E}({\mathbf {Q}}_{t}|U_{t}=u)(1+O(h^\delta )) \end{aligned}$$
(7.4)

since k(x) is symmetric, \(\delta =2\) if \(j=0,2\); \(\delta =1\) if \(j=1\).

Secondly, we derive the variance of \(({\mathbf {W}}_{j}(u))_{lk}\), the (lk)th element of \({\mathbf {W}}_{j}(u)\). To that end, let \(w_{t}(u)=Q_{t,lk}\left( \frac{U_{t}-u}{h}\right) ^{j}k_{h}(U_{t}-u)\). Then we have

$$\begin{aligned} Th{{\mathrm {Var}}}\left[ ({\mathbf {W}}_{j}(u))_{lk}\right]= & {} h {\mathrm {Var}}(w_{t}(u))+2h\sum _{m=1}^{T-1}\left( 1-\frac{m}{T}\right) {\mathrm {Cov}}\left( w_{1}(u),w_{m+1}(u)\right) \\\equiv & {} {\mathbb {I}}_{1}+{\mathbb {I}}_{2} \end{aligned}$$

For \({\mathbb {I}}_{1}\), we have

$$\begin{aligned} {\mathbb {I}}_{1}= & {} h{\mathrm {Var}}(w_{t}(u)) =h\mathrm {E}\left( Q^{2}_{t,lk}\left( \frac{U_{t}-u}{h}\right) ^{2j}k^{2}_{h}(U_{t}-u)\right) -h\mathrm {E}^2(w_{t}(u))\nonumber \\= & {} h\mathrm {E}\left( \mathrm {E}(Q^{2}_{t,lk}|U_{t})\left( \frac{U_{t}-u}{h}\right) ^{2j}k^{2}_{h}(U_{t}-u)\right) +O(1)\nonumber \\= & {} h\int \mathrm {E}(Q^{2}_{t,lk}|s)\left( \frac{s-u}{h}\right) ^{2j}\frac{1}{h^2}k^2\left( \frac{s-u}{h}\right) f(s)\mathrm {d}s+O(1)\nonumber \\= & {} O(1) \end{aligned}$$
(7.5)

For \({\mathbb {I}}_{2}\), we can first get

$$\begin{aligned}&{\mathrm {Cov}}\left( w_{t}(u),w_{t+m}(u)\right) \nonumber \\&\quad = \mathrm {E}\Bigg ( \mathrm {E}(Q_{t,lk}Q_{t+m,lk}|U_{t},U_{t+m})\Bigg [\left( \frac{U_{t}-u}{h}\right) ^{j}k_{h}(U_{t}-u)\nonumber \\&\quad \quad \times \,\left( \frac{U_{t+m}-u}{h}\right) ^{j}k_{h}(U_{t+m}-u)\Bigg ]\Bigg )+O(1)\nonumber \\&\quad = \iint \mathrm {E}(Q_{t,lk}Q_{t+m,lk}|x,y)\left( \frac{x-u}{h}\right) ^{j}k\left( \frac{x-u}{h}\right) \nonumber \\&\quad \quad \times \,\left( \frac{y-u}{h}\right) ^{j}k\left( \frac{y-u}{h}\right) f_{U_{t},U_{t+m}}(x,y)\mathrm {d}\left( \frac{x-u}{h}\right) \mathrm {d}\left( \frac{y-u}{h}\right) +O(1)\nonumber \\&\quad =O(1) \end{aligned}$$
(7.6)

where \(f_{U_{t},U_{t+m}}(x,y)\) is the joint density function of \((U_{t},U_{t+m})\). Hence, \(\sum _{m=1}^{d_{T}-1}{\mathrm {Cov}}\left( w_{1}(u),w_{1+m}(u)\right) =O(d_{T})\).

Analogous to the derivation of \({\mathbb {I}}_{1}\), we can also derive

$$\begin{aligned} \mathrm {E}\left| w_{t}(u)\right| ^{2+\delta }= & {} \mathrm {E}\left| Q_{t,lk}\left( \frac{U_{t}-u}{h}\right) ^{j}k_{h}(U_{t}-u) \right| ^{2+\delta } \le \frac{C}{h^{1+\delta }} \end{aligned}$$
(7.7)

Therefore if \(d^{b}_{T}h^{\delta /(2+\delta )}=O(1)\), by the Davydov inequality and assumption \(\sum _{m=1}^{\infty }m^{b}\left[ \alpha (m)\right] ^{\delta /(2+\delta )}<\infty \) \((b>2+\delta ,\,\delta >0)\), we have

$$\begin{aligned} \sum _{m=d_{T}}^{T-1}\left| \mathrm {{\mathrm {Cov}}}\left( w_{1}(u),w_{m+1}(u)\right) \right|\le & {} \sum _{m=d_{T}}^{T-1}8\left[ \alpha (m)\right] ^{\delta /(2+\delta )}\left[ \mathrm {E}\left| w_{1}\right| ^{2+\delta }\right] ^{2/(2+\delta )}\nonumber \\\le & {} 8h^{-2(1+\delta )/(2+\delta )}\sum _{m=d_{T}}^{T-1}\left[ \alpha (m)\right] ^{\delta /(2+\delta )}\nonumber \\\le & {} 8h^{-2(1+\delta )/(2+\delta )}d_{T}^{-b} \sum _{m=d_{T}}^{T-1}m^{b}\left[ \alpha (m)\right] ^{\delta /(2+\delta )}\nonumber \\= & {} O(h^{-1}) \end{aligned}$$
(7.8)

To sum up, if \(d_{T}\rightarrow \infty \), \(d_{T}h=O(1)\) and \(d^{b}_{T}h^{\delta /(2+\delta )}=O(1)\), then \( {\mathbb {I}}_{2}\le h\sum _{m=1}^{T-1}\left| {{\mathrm {Cov}}}\left( w_{1}(u),w_{m+1}(u)\right) \right| =O(d_{T}h)+O(1)=O(1) \). Hence, we have \(Th{\mathrm {Var}}\left[ ({\mathbf {W}}_{j}(u))_{lk}\right] = O(1)\). \(\blacksquare \)

To handle the divergence problem of \((T^{-1}\mathbf {{\overline{Z}}}^{\top }\mathbf {{\overline{Z}}})^+\) when \(d>R\), we follow Karabiyik et al. (2017) and left multiple \(\mathbf {{\overline{Z}}}_{t}\) with \({\mathbf {A}}^{\top }_{N}{\mathbf {B}}^{\top }\), where \({\mathbf {B}}\) and \({\mathbf {A}}_{N}\) are specified in the proof of (7.10). Denote \(\mathbf {{\overline{Z}}}{\mathbf {B}}{\mathbf {A}}_{N}\) as \(\mathbf {{\overline{Z}}}^{0}\), \(\mathbf {{\overline{V}}}{\mathbf {B}}{\mathbf {A}}_{N}\) as \(\mathbf {{\overline{V}}}^{0}\), \(\left( {\mathbf {F}},{\mathbf {0}}_{T\times (d-R)}\right) \) as \({\mathbf {F}}^{0}\), then \(\mathbf {{\overline{Z}}}^{0}={\mathbf {F}}^{0}+\mathbf {{\overline{V}}}^{0}\). Using this device, we could guarantee the inverse of the left side of (7.10) also converges to the inverse of the right side of (7.10).

Lemma 2

Let \(c_{NTh1}=(Th)^{-1/2}+h+N^{-1/2}\), \(c_{Th1}=(Th)^{-1/2}+h\), while \(c_{NTh}=(Th)^{-1/2}+h^2+N^{-1/2}\), \(c_{Th}=(Th)^{-1/2}+h^2\), we have

$$\begin{aligned}&(a)\quad T^{-1}\mathbf {{\overline{Z}}}^{\top }\mathbf {{\overline{Z}}} ={\mathbf {D}}^{\top }\varvec{\varSigma }_{F}{\mathbf {D}}+O_{p}(1/\sqrt{NT}+1/N) \end{aligned}$$
(7.9)
$$\begin{aligned}&(b)\quad T^{-1}\mathbf {{\overline{Z}}}^{0\top }\mathbf {{\overline{Z}}}^{0}=\left( \begin{array}{cc} \varvec{\varSigma }_{F} &{} {\mathbf {0}}_{R\times (d-R)} \\ {\mathbf {0}}_{(d-R)\times R} &{} {\mathbf {B}}^{\top }_{-R}\varvec{\varSigma }_{v} {\mathbf {B}}_{-R} \\ \end{array} \right) +O_{p}(1/\sqrt{N}+1/\sqrt{T}) \end{aligned}$$
(7.10)
$$\begin{aligned}&(c)\quad T^{-1}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\overline{Z}}}^{0}=f(u)\left( \begin{array}{cc} {\mathbf {L}}^{\top }\varvec{\varSigma }_{F}+O_{p}(c_{NTh}) &{} {\mathbf {0}}_{p\times (d-R)}+O_{p}(c_{NTh}) \\ {\mathbf {0}}_{p\times R}+O_{p}(c_{NTh1}) &{} {\mathbf {0}}_{p\times (d-R)}+O_{p}(c_{NTh1}) \\ \end{array} \right) \end{aligned}$$
(7.11)
$$\begin{aligned}&(d)\quad T^{-1}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\widetilde{X}}}(u)=f(u)\left( \begin{array}{cc} \varvec{\varOmega }_{xx}(u)+O_{p}(c_{Th}) &{} {\mathbf {0}}_{p\times p}+O_{p}(c_{Th1}) \\ {\mathbf {0}}_{p\times p}+O_{p}(c_{Th1}) &{} \mu _{2}\varvec{\varOmega }_{xx}(u)+O_{p}(c_{Th}) \\ \end{array} \right) \end{aligned}$$
(7.12)
$$\begin{aligned}&(e)\quad T^{-1}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\widetilde{A}}}(u)=f(u)\mu _{2}\left( \begin{array}{c} {\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{e} + O_{p}(c_{Th}) \\ {\mathbf {0}}_{p\times p}+ O_{p}(c_{Th1})\\ \end{array} \right) . \end{aligned}$$
(7.13)

where \( \mathbf {{\widetilde{A}}}(u)^{\top }=\left( \begin{array}{ccc} {\mathbf {X}}_{1}(\frac{U_{1}-u}{h})^2 &{} \cdots &{} {\mathbf {X}}_{T}(\frac{U_{T}-u}{h})^2 \\ \end{array} \right) \) and \(\varvec{\varOmega }_{xx}(u) = \mathrm {E}({\mathbf {X}}_{t}{\mathbf {X}}^{\top }_{t}\vert U_{t}=u)\).

Proof

(a) \( T^{-1}\mathbf {{\overline{Z}}}^{\top }\mathbf {{\overline{Z}}}=T^{-1}\mathbf {{\overline{D}}}^{\top }{\mathbf {F}}^{\top }{\mathbf {F}}\mathbf {{\overline{D}}} +T^{-1}\mathbf {{\overline{D}}}^{\top }{\mathbf {F}}^{\top }\mathbf {{\overline{V}}} +T^{-1}\mathbf {{\overline{V}}}^{\top }{\mathbf {F}}\mathbf {{\overline{D}}}+T^{-1}\mathbf {{\overline{V}}}^{\top }\mathbf {{\overline{V}}} ={\mathbf {D}}^{\top }\varvec{\varSigma }_{F}{\mathbf {D}}+O_{p}(1/\sqrt{T})+O_{p}(1/\sqrt{NT})+O_{p}(1/N) \). But \({\mathbf {D}}^{\top }\varvec{\varSigma }_{F}{\mathbf {D}} \) is of deficient rank. Hence \((T^{-1}\mathbf {{\overline{Z}}}^{\top }\mathbf {{\overline{Z}}})^{+} {\mathop {\nrightarrow }\limits ^{\mathrm {P}}} ({\mathbf {D}}^{\top }\varvec{\varSigma }_{F}{\mathbf {D}})^{+}\).

(b) To counteract the degenerating matrix \({\mathbf {D}}^{\top }\varvec{\varSigma }_{F}{\mathbf {D}}\), we premultiple \(\mathbf {{\overline{Z}}}_{t}\) with \({\mathbf {A}}^{\top }_{N}{\mathbf {B}}^{\top }\) where \({\mathbf {B}}=({\mathbf {B}}_{R},{\mathbf {B}}_{-R})=\left( \begin{array}{cc} {\mathbf {D}}_{R}^{-1} &{} -{\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R} \\ {\mathbf {0}}_{(d-R)\times R}&{} \varvec{\mathrm {I}}_{d-R} \\ \end{array} \right) \) is of full rank, \({\mathbf {D}}_{R}\) is an \(R\times R\) submatrix of \({\mathbf {D}}\) with full rank, \({\mathbf {D}}_{-R}\) is the remaining \(R\times (d-R)\) submatrix of \({\mathbf {D}}\) and \({\mathbf {A}}_{N}=\text {diag}\left( \varvec{\mathrm {I}}_{R},\sqrt{N}\varvec{\mathrm {I}}_{d-R}\right) \). Then \(T^{-1}\mathbf {{\overline{Z}}}^{0\top }\mathbf {{\overline{Z}}}^{0}=\left( \begin{array}{cc} \varvec{\varSigma }_{F} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {B}}^{\top }_{-R}\varvec{\varSigma }_{v} {\mathbf {B}}_{-R} \\ \end{array} \right) \) \(+O_{p}(1/\sqrt{N}+1/\sqrt{T}) \). This limiting matrix is now of full rank.

(c) Since \({\mathbf {e}}_{t}\) is of finite dimension, even if its components come from some of \({\mathbf {V}}_{jt}\)’s, the number of these \({\mathbf {V}}_{jt}\)’s is finite. We denote the set of these \({\mathbf {V}}_{jt}\)’s as \({\mathfrak {M}}\). Then

$$\begin{aligned}&T^{-1}\sum _{t=1}^{T}{\mathbf {e}}_{t}\overline{{\mathbf {V}}}^{\top }_{t}k_{h}(U_{t}-u)\nonumber \\&\quad = (NT)^{-1}\sum _{j\notin {\mathfrak {M}}}\sum _{t=1}^{T}{\mathbf {e}}_{t}{\mathbf {V}}^{\top }_{jt}k_{h}(U_{t}-u) +(NT)^{-1}\sum _{j\in {\mathfrak {M}}}\sum _{t=1}^{T}{\mathbf {e}}_{t}{\mathbf {V}}^{\top }_{jt}k_{h}(U_{t}-u) \nonumber \\&\quad = O_{p}(1/\sqrt{NTh})+O_{p}(1/N) \end{aligned}$$
(7.14)

Now we are in a good position to analyze

$$\begin{aligned} T^{-1}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\overline{Z}}}^{0}= & {} \left( \begin{array}{c} T^{-1}\sum _{t=1}^{T}{\mathbf {X}}_{t}\mathbf {{\overline{Z}}}^{\top }_{t}{\mathbf {B}}{\mathbf {A}}_{N} k_{h}(U_{t}-u)\\ T^{-1}\sum _{t=1}^{T}{\mathbf {X}}_{t}\mathbf {{\overline{Z}}}^{\top }_{t}{\mathbf {B}}{\mathbf {A}}_{N} h^{-1}(U_{t}-u)k_{h}(U_{t}-u)\\ \end{array} \right) \nonumber \\ \end{aligned}$$
(7.15)

By Lemma 1, the upper block matrix

$$\begin{aligned}&T^{-1}\sum _{t=1}^{T}{\mathbf {X}}_{t}\mathbf {{\overline{Z}}}^{\top }_{t}{\mathbf {B}}{\mathbf {A}}_{N} k_{h}(U_{t}-u)\nonumber \\&\quad = T^{-1}\sum _{t=1}^{T} \left[ {\mathbf {L}}^{\top }{\mathbf {f}}_{t}{\mathbf {f}}_{t}^{\top }\overline{{\mathbf {D}}} +{\mathbf {L}}^{\top }{\mathbf {f}}_{t}\overline{{\mathbf {V}}}_{t}^{\top } +{\mathbf {e}}_{t}{\mathbf {f}}_{t}^{\top }\overline{{\mathbf {D}}} +{\mathbf {e}}_{t}\overline{{\mathbf {V}}}_{t}^{\top }\right] {\mathbf {B}}{\mathbf {A}}_{N}k_{h}(U_{t}-u) \nonumber \\&\quad =f(u){\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\left( \varvec{\mathrm {I}}_{R}, {\mathbf {0}}_{R\times (d-R)}\right) +O_{p}(c_{NTh}) \end{aligned}$$
(7.16)

Analogously, for the lower block matrix, it is of order \(O_{p}(h+1/\sqrt{Th}+1/\sqrt{N}) \).

(d) and (e) are the straightforward results of Lemma 1. \(\square \)

By \(\frac{1}{dNT}{\mathbf {Z}}{\mathbf {Z}}^{\top }\widehat{{\mathbf {F}}}=\widehat{{\mathbf {F}}}\widehat{\varvec{\varXi }}_{NT}\), we have

$$\begin{aligned} (\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}}) \widehat{\varvec{\varXi }}_{NT}= & {} \frac{1}{dNT}{\mathbf {F}}{\mathfrak {D}}{\mathbf {V}}^{\top } \widehat{{\mathbf {F}}}+\frac{1}{dNT}{\mathbf {V}}{\mathfrak {D}}^{\top }{\mathbf {F}}^{\top }\widehat{{\mathbf {F}}} +\frac{1}{dNT}{\mathbf {V}}{\mathbf {V}}^{\top }\widehat{{\mathbf {F}}} \end{aligned}$$
(7.17)

where \({\mathbf {H}}=\frac{1}{dNT}{\mathfrak {D}}{\mathfrak {D}}^{\top }{\mathbf {F}}^{\top }\widehat{{\mathbf {F}}}\widehat{\varvec{\varXi }}^{-1}_{NT}\) is invertible and both \({\mathbf {H}}\) and \(\widehat{\varvec{\varXi }}_{NT}\) are shown to be \(O_{p}(1)\) in Lemma A.3 of Bai (2003).

Lemma 3

Denote \({\mathbf {E}}=({\mathbf {e}}_{1},\cdots ,{\mathbf {e}}_{T})^{\top }\). Then we have

$$\begin{aligned}&(a)\quad \frac{1}{T}{\mathbf {F}}^{\top }K_{h}(u)(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})=O_{p}\left( \frac{1}{N}+\frac{1}{\sqrt{NTh}}+\frac{1}{T\sqrt{h}}\right) \end{aligned}$$
(7.18)
$$\begin{aligned}&(b)\quad \frac{1}{T}{\mathbf {E}}^{\top }K_{h}(u)(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})=O_{p}\left( \frac{1}{N}+\frac{1}{\sqrt{NTh}}\right) \end{aligned}$$
(7.19)
$$\begin{aligned}&(c)\quad \frac{1}{T}{\mathbf {X}}^{\top }K_{h}(u)(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})=O_{p}\left( \frac{1}{N}+\frac{1}{\sqrt{NTh}}+\frac{1}{T\sqrt{h}}\right) \end{aligned}$$
(7.20)

Proof

(a) We left-multiply \(\frac{1}{T}{\mathbf {F}}^{\top }K_{h}(u)\) to (7.17), then the first term of the right side of (7.17) becomes

$$\begin{aligned} \frac{1}{T}{\mathbf {F}}^{\top }{\mathbf {K}}_{h}(u){\mathbf {F}}\frac{1}{dNT}{\mathfrak {D}}{\mathbf {V}}^{\top }\widehat{{\mathbf {F}}}= & {} O_{p}(1)\frac{1}{dNT}{\mathfrak {D}}{\mathbf {V}}^{\top }(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})+ O_{p}(1)\frac{1}{dNT}{\mathfrak {D}}{\mathbf {V}}^{\top }{\mathbf {F}}{\mathbf {H}}\nonumber \\= & {} O_{p}\left( \frac{1}{N}+\frac{1}{\sqrt{NT}}\right) +O_{p}\left( \frac{1}{\sqrt{NT}}\right) \end{aligned}$$
(7.21)

where \(\frac{1}{dN\sqrt{T}}{\mathfrak {D}}{\mathbf {V}}^{\top }=O_{p}(1/\sqrt{N})\), \(\frac{1}{\sqrt{T}}(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})=O_{p}(1/\sqrt{N}+1/\sqrt{T})\) is the direct result of Theorem 1 of Bai and Ng (2002) and \(\frac{1}{dNT}{\mathfrak {D}}{\mathbf {V}}^{\top }{\mathbf {F}}=\frac{1}{dNT}\sum _{t=1}^{T}\sum _{j=1}^{N}{\mathbf {D}}_{j}{\mathbf {V}}_{jt}{\mathbf {f}}^{\top }_{t} =O_{p}(1/\sqrt{NT})\).

In a similar manner, the resulted new 2nd term plus the new 3rd term is \(\frac{1}{dNT}{\mathbf {F}}^{\top }{\mathbf {K}}_{h}(u){\mathbf {V}}{\mathfrak {D}}^{\top }\frac{1}{T}{\mathbf {F}}^{\top }\widehat{{\mathbf {F}}} +\frac{1}{dNT}{\mathbf {F}}^{\top }{\mathbf {K}}_{h}(u){\mathbf {V}}\frac{1}{T}{\mathbf {V}}^{\top }\widehat{{\mathbf {F}}} =O_{p}(\frac{1}{\sqrt{NTh}})+O_{p}(\frac{1}{T\sqrt{h}})\). So \(\frac{1}{T}{\mathbf {F}}^{\top }K_{h}(u)(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})=O_{p}(\frac{1}{N}+\frac{1}{\sqrt{NTh}}+\frac{1}{T\sqrt{h}})\).

(b) It can be obtained analogously to (a).

(c) This is the immediate result of (a) and (b). \(\square \)

Proof of Theorem 1

$$\begin{aligned} \varvec{{\widehat{\lambda }}}_{P}= & {} \left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T} -{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T} -{\mathbf {S}})\widehat{{\mathbf {F}}}\right] ^{-1} \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T} -{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}}) \left[ {\mathbf {M}}+{\mathbf {F}}\varvec{\lambda } +\varvec{\epsilon }\right] \nonumber \\ \end{aligned}$$
(7.22)

To derive the asymptotic distribution of (7.22), we follow several steps. In the 1st step, we find the limit of the denominator in (7.22). According to (7.12) and (7.20), we have

$$\begin{aligned}&({\mathbf {X}}_{t}^{\top },{\mathbf {0}}_{1\times p})\left[ \mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t}) \mathbf {{\widetilde{X}}}(U_{t})\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t})\widehat{{\mathbf {F}}}\nonumber \\&\quad ={\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {H}}+O_{p}(c_{NTh}) \end{aligned}$$
(7.23)

then the denominator

$$\begin{aligned}&\frac{1}{T}\left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\widehat{{\mathbf {F}}}\right] +O_{p}(c_{NTh})\nonumber \\&\quad = \frac{1}{T}\sum _{t=1}^{T}\left( \widehat{{\mathbf {f}}}_{t}-{\mathbf {H}}^{\top }\varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t} \right) \left( \widehat{{\mathbf {f}}}^{\top }_{t}-{\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {H}}\right) \nonumber \\&\quad = {\mathbf {H}}^{\top }\varvec{\varSigma }_{F}{\mathbf {H}}-{\mathbf {H}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}({\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{e})^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {H}} \equiv \varvec{\varSigma }^{-1}_{P} \end{aligned}$$
(7.24)

where we use the fact that \(\frac{1}{T}\sum _{t=1}^{T}\widehat{{\mathbf {f}}}_{t}\widehat{{\mathbf {f}}}^{\top }_{t}={\mathbf {H}}^{\top }\varvec{\varSigma }_{F}{\mathbf {H}}+O_{p}(1/\sqrt{T}+1/\sqrt{N})\).

In the 2nd step, we find the limit of the term containing \({\mathbf {M}}\). Simply substituting \(\widehat{{\mathbf {F}}}\) with \({\mathbf {M}}\) in (7.23), we have

$$\begin{aligned}&\frac{1}{T}\left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}}){\mathbf {M}}\right] \nonumber \\&\quad = \frac{1}{T}\sum _{t=1}^{T}\left( \widehat{{\mathbf {f}}}_{t}-{\mathbf {H}}^{\top }\varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t} \right) {\mathbf {X}}_{t}^{\top }\varvec{\beta }(U_{t})[1+O_{p}(c_{NTh})] O_{p}(c_{NTh})\nonumber \\&\quad =O_{p}(c_{NTh}^2) \end{aligned}$$
(7.25)

In the 3rd step, we will show the limit of the term containing \({\mathbf {F}}\varvec{\lambda }\). First, \( ({\mathbf {X}}_{t}^{\top },{\mathbf {0}}_{1\times p})\)\(\left[ \mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t}) \mathbf {{\widetilde{X}}}(U_{t})\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t})({\mathbf {F}}-\widehat{{\mathbf {F}}}{\mathbf {H}}^{-1}) ={\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t})O_{p}(\frac{1}{N}+\frac{1}{\sqrt{NTh}}+\frac{1}{T\sqrt{h}}) \) according to (7.12) and (7.20). Then

$$\begin{aligned}&\frac{1}{T}\left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }{\mathbf {S}}({\mathbf {F}}-\widehat{{\mathbf {F}}}{\mathbf {H}}^{-1})\right] \nonumber \\&\quad = \frac{1}{T}\sum _{t=1}^{T}\left( \widehat{{\mathbf {f}}}_{t}-{\mathbf {H}}^{\top }\varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}+O_{p}(c_{NTh}) \right) \nonumber \\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t})O_{p}\left( \frac{1}{N}+\frac{1}{\sqrt{NTh}}+\frac{1}{T\sqrt{h}}\right) \nonumber \\&\quad = O_{p}(c_{NTh})O_{p}\left( \frac{1}{N}+\frac{1}{\sqrt{NTh}}+\frac{1}{T\sqrt{h}}\right) \end{aligned}$$
(7.26)

And next

$$\begin{aligned}&\frac{1}{T}\left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }({\mathbf {F}}-\widehat{{\mathbf {F}}}{\mathbf {H}}^{-1})\right] \nonumber \\&\quad = \frac{1}{T}\sum _{t=1}^{T}\left( \widehat{{\mathbf {f}}}_{t}-{\mathbf {H}}^{\top }\varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}+O_{p}(c_{NTh}) \right) ({\mathbf {f}}^{\top }_{t}-\widehat{{\mathbf {f}}}^{\top }_{t}{\mathbf {H}}^{-1})\nonumber \\&\quad = O_{p}(1/N+1/T)+ O_{p}(1/N+1/T)+O_{p}(c_{NTh})O_{p}(1/T+1/\sqrt{NT})\nonumber \\ \end{aligned}$$
(7.27)

Combining (7.26) and (7.27), we have

$$\begin{aligned}&\sqrt{T}\left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\widehat{{\mathbf {F}}}\right] ^{+}\widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}}){\mathbf {F}}\varvec{\lambda }\nonumber \\&\quad ={\mathbf {H}}^{-1}\varvec{\lambda }+O_{p}\left( \frac{\sqrt{T}}{N}+\frac{1}{\sqrt{T}}+\frac{1}{N\sqrt{h}}+\frac{1}{h\sqrt{NT}}+ \frac{1}{Th}\right) \end{aligned}$$
(7.28)

So if \(\sqrt{T}/N \rightarrow \tau \) and \(\varvec{\lambda }\ne {\mathbf {0}}\), a bias term will show up.

In the last step, we show the limit of the term having \(\varvec{\varvec{\epsilon }}\). We first observe that \( \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\varvec{\varvec{\epsilon }} = \frac{1}{T}\sum _{t=1}^{T}\left( \widehat{{\mathbf {f}}}_{t}-{\mathbf {H}}^{\top }\varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t} \right) \epsilon _{t} [1+O_{p}(c_{NTh})] \), then \( \frac{\sqrt{T}}{T}\left[ \widehat{{\mathbf {F}}}^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\varvec{\epsilon }\right] {\mathop {\rightarrow }\limits ^{\mathrm {d}}} \text {N}(0,\sigma ^{2}\varvec{\varSigma }^{-1}_{P}) \). All in all,

$$\begin{aligned} \sqrt{T}(\widehat{\varvec{\lambda }}_{P}-{\mathbf {H}}^{-1}\varvec{\lambda })&{\mathop {\rightarrow }\limits ^{\mathrm {d}}}&\text {N}({\mathbf {0}},\sigma ^2\varvec{\varSigma }_{P}) \end{aligned}$$
(7.29)

\(\square \)

Proof of Theorem 2

According to

$$\begin{aligned} \widehat{\varvec{\beta }}_{P}(u) = (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)({\mathbf {Y}}-\widehat{{\mathbf {F}}}\widehat{\varvec{\lambda }}_{P}) \end{aligned}$$

we first have

$$\begin{aligned} \widehat{\varvec{\beta }}_{P}(u)-\varvec{\beta }(u)= & {} \,\frac{h^{2}}{2} (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\widetilde{A}}}(u)\varvec{\beta }^{\prime \prime }(\xi )\nonumber \\&\quad +\, (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)({\mathbf {F}}\varvec{\lambda }-\widehat{{\mathbf {F}}}\widehat{\varvec{\lambda }}_{P})\nonumber \\&\quad +\, (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\varvec{\varvec{\epsilon }}\nonumber \\\equiv & {} J_{1}+J_{2}+J_{3} \end{aligned}$$
(7.30)

where \(\xi \) lies between \(U_{t}\) and u.

For \(J_{1}\), according to (7.13) and (7.12), we have \(J_{1}=\frac{h^{2}}{2}\mu _{2}\varvec{\beta }^{\prime \prime }(\mu )+o_{p}(h^2)\).

For \(J_{2}\), we focus on

$$\begin{aligned}&\frac{\sqrt{Th}}{T}{\mathbf {X}}^{\top }{\mathbf {K}}_{h}(u)({\mathbf {F}}\varvec{\lambda }-\widehat{{\mathbf {F}}}\widehat{\varvec{\lambda }}_{P}) =\frac{\sqrt{Th}}{T}{\mathbf {X}}^{\top }{\mathbf {K}}_{h}(u)({\mathbf {F}}-\widehat{{\mathbf {F}}}{\mathbf {H}}^{-1})\varvec{\lambda }\nonumber \\&\quad +\frac{\sqrt{Th}}{T}{\mathbf {X}}^{\top }{\mathbf {K}}_{h}(u)(\widehat{{\mathbf {F}}}-{\mathbf {F}}{\mathbf {H}})({\mathbf {H}}^{-1}\varvec{\lambda }-\widehat{\varvec{\lambda }}_{P}) +\frac{\sqrt{Th}}{T}{\mathbf {X}}^{\top }{\mathbf {K}}_{h}(u){\mathbf {F}}{\mathbf {H}}({\mathbf {H}}^{-1}\varvec{\lambda }-\widehat{\varvec{\lambda }}_{P})\nonumber \\&=O_{p}\left( \frac{\sqrt{Th}}{N}+\frac{1}{\sqrt{N}}+\frac{1}{\sqrt{T}}\right) +O_{p}(\sqrt{h}) \end{aligned}$$
(7.31)

For \(J_{3}\), we have

$$\begin{aligned} \frac{\sqrt{Th}}{T}{\mathbf {X}}^{\top }{\mathbf {K}}_{h}(u)\varvec{\epsilon }= & {} \frac{\sqrt{Th}}{T}\sum _{t=1}^{T}{\mathbf {X}}_{t}\epsilon _{t}k_{h}(U_{t}-u){\mathop {\rightarrow }\limits ^{\mathrm {d}}}\text {N}({\mathbf {0}}, \nu _{0}\sigma ^2 f(u)({\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{e})) \end{aligned}$$

Combing these terms together yields

$$\begin{aligned} \sqrt{Th}(\widehat{\varvec{\beta }}_{P}(u)-\varvec{\beta }(u)-\frac{h^{2}}{2}\mu _{2}\varvec{\beta }^{\prime \prime }(\mu )){\mathop {\rightarrow }\limits ^{\mathrm {d}}}\text {N}\left( {\mathbf {0}}, \nu _{0}\frac{\sigma ^2}{f(u)}\left[ {\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{e}\right] ^{-1}\right) \end{aligned}$$

\(\square \)

Proof of Theorem 3

According to (7.29), it is easy to see

$$\begin{aligned} T\sigma ^{-2}\widehat{\varvec{\lambda }}_{P}^{\top }\varvec{\varSigma }^{-1}_{P}\widehat{\varvec{\lambda }}_{P}&{\mathop {\rightarrow }\limits ^{\mathrm {d}}}&\chi ^2(R,\psi _{\lambda }) \end{aligned}$$
(7.32)

where \(\psi _{\lambda }=\lim _{N,T\rightarrow \infty } T \sigma ^2 \varvec{\lambda }^{\top }{\mathbf {H}}^{-1\top }\varvec{\varSigma }^{-1}_{P}{\mathbf {H}}^{-1}\varvec{\lambda }\). But \(\varvec{\varSigma }^{-1}_{P}\) is unknown, it can be estimated by (7.24) and \({\widehat{\sigma }}_{P}^2=T^{-1}\widehat{\varvec{\varvec{\epsilon }}}^{T}\widehat{\varvec{\varvec{\epsilon }}}{\mathop {\rightarrow }\limits ^{\mathrm {P}}}\sigma ^2\) is obvious. \(\square \)

Proof of Theorem 4

The proof is similar to, even simpler than the one of Theorem 5. Hence, we omit it. \(\square \)

Proof of Theorem 5

$$\begin{aligned} \varvec{{\widehat{\lambda }}}_{C}^{0}= & {} \left[ \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\mathbf {{\overline{Z}}}^{0}\right] ^{-1}\mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\left[ {\mathbf {M}}+{\mathbf {F}}\varvec{\lambda }+\varvec{\epsilon }\right] \nonumber \\ \end{aligned}$$
(7.33)

Part (a) To derive the asymptotical distribution of (7.33), we follow several steps. In the 1st step, we find the limit of the denominator in (7.33). According to (7.12) and (7.11), we have

$$\begin{aligned}&({\mathbf {X}}_{t}^{\top },{\mathbf {0}}_{1\times p})\left[ \mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t}) \mathbf {{\widetilde{X}}}(U_{t})\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t})\mathbf {{\overline{Z}}}^{0}\nonumber \\&\quad = ({\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {L}}^{\top }\varvec{\varSigma }_{F},{\mathbf {0}}_{1\times (d-R)})+O_{p}(c_{NTh}) \end{aligned}$$
(7.34)

then the denominator

$$\begin{aligned}&\frac{1}{T}\left[ \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\mathbf {{\overline{Z}}}^{0}\right] +O_{p}(c_{NTh})\nonumber \\&\quad = \frac{1}{T}\sum _{t=1}^{T}\left( \mathbf {{\overline{Z}}}^{0}_{t}-\left( \begin{array}{c} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}\\ {\mathbf {0}}_{(d-R)\times 1} \\ \end{array} \right) \right) \left( \mathbf {{\overline{Z}}}^{0\top }_{t}-({\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {L}}^{\top }\varvec{\varSigma }_{F},{\mathbf {0}}_{1\times (d-R)})\right) \nonumber \\&\quad =\left( \begin{array}{cc} \varvec{\varSigma }_{F}-\varvec{\varSigma }_{F}{\mathbf {L}}({\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{e})^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F} &{} {\mathbf {0}}_{R\times (d-R)} \\ {\mathbf {0}}_{(d-R)\times R} &{} {\mathbf {B}}^{\top }_{-R}\varvec{\varSigma }_{v} {\mathbf {B}}_{-R} \\ \end{array} \right) \nonumber \\&\quad \equiv \varvec{\varSigma } \end{aligned}$$
(7.35)

In the 2nd step, we find the limit of the term containing \({\mathbf {M}}\) in (7.33). Simply substituting \(\mathbf {{\overline{Z}}}^{0}\) with \({\mathbf {M}}\) in (7.34), we have

$$\begin{aligned}&\frac{1}{T}\left[ \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}}){\mathbf {M}}\right] \nonumber \\&\quad = \frac{1}{T}\sum _{t=1}^{T}\left( \mathbf {{\overline{Z}}}^{0}_{t}-\left( \begin{array}{c} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}\\ {\mathbf {0}}_{(d-R)\times 1} \\ \end{array} \right) \right) {\mathbf {X}}_{t}^{\top }\varvec{\beta }(U_{t})[1+O_{p}(c_{NTh})] O_{p}(c_{NTh})\nonumber \\&\quad = O_{p}(c_{NTh}^2) \end{aligned}$$
(7.36)

In the 3rd step, we will show the limit of the term involving \({\mathbf {F}}\varvec{\lambda }\).

$$\begin{aligned}&\left[ \mathbf {{\overline{Z}}}^{0\top } (\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\mathbf {{\overline{Z}}}^{0}\right] ^{-1}\mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\left[ {\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}}^{0}\left( \begin{array}{c} \varvec{\mathrm {I}}_{R\times R}\\ {\mathbf {0}}_{(d-R)\times R} \\ \end{array} \right) \varvec{\lambda }\right] \nonumber \\&\quad =-\left[ \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\mathbf {{\overline{Z}}}^{0}\right] ^{-1}\mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\mathbf {{\overline{V}}}_{R}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }\nonumber \\&\quad \equiv -\left[ \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\mathbf {{\overline{Z}}}^{0}\right] ^{-1}\left( {\mathbf {a}}+{\mathbf {b}}\right) \end{aligned}$$
(7.37)

For \({\mathbf {a}}\), we have

$$\begin{aligned} \frac{\sqrt{T}}{T}{\mathbf {a}}= & {} \frac{\sqrt{T}}{T}\mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }\mathbf {{\overline{V}}}_{R}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }\nonumber \\= & {} \frac{\sqrt{T}}{T}\sum _{t=1}^{T}\left( \mathbf {{\overline{Z}}}^{0}_{t}-\left( \begin{array}{c} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}\\ {\mathbf {0}}_{(d-R)\times 1} \\ \end{array} \right) \right) \mathbf {{\overline{V}}}_{R}{\mathbf {D}}^{-1}_{R}\varvec{\lambda } [1+O_{p}(c_{NTh})]\nonumber \\= & {} \left( \begin{array}{c} \sqrt{T}/T\mathbf {F^{\top }}\mathbf {{\overline{V}}}_{R} +\sqrt{T}/T{\mathbf {D}}_{R}^{-1\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\\ \sqrt{NT}/T\mathbf {{\overline{V}}}^{\top }_{-R}\mathbf {{\overline{V}}}_{R} -\sqrt{NT}/T({\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R})^{\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\\ \end{array} \right) {\mathbf {D}}^{-1}_{R}\varvec{\lambda } [1+O_{p}(c_{NTh})]\nonumber \\= & {} \left( \begin{array}{c} {\mathbf {0}}_{R\times R}+O_{p}(1/\sqrt{N})+O_{p}(\sqrt{T}/N)\\ {\mathbf {0}}_{(d-R)\times R}+O_{p}(\sqrt{NT}/N)\\ \end{array} \right) {\mathbf {D}}^{-1}_{R}\varvec{\lambda } [1+O_{p}(c_{NTh})] \end{aligned}$$
(7.38)

The implication of (7.38) is that if \(\sqrt{NT}/N \nrightarrow 0\) (which is true if \(N/T\rightarrow \tau \) (a constant)), then \(\sqrt{T}/{T}{\mathbf {a}}\) is not \(o_{p}(1)\).

For \({\mathbf {b}}\), we first have \(T^{-1}\mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t})\mathbf {{\overline{V}}}_{R}=O_{p}(1/N+1/\sqrt{NTh})\), then we have \(\sqrt{T}({\mathbf {X}}_{t}^{\top },{\mathbf {0}}_{1\times p})\left[ \mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t}) \mathbf {{\widetilde{X}}}(U_{t})\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(U_{t}){\mathbf {K}}_{h}(U_{t})\mathbf {{\overline{V}}}_{R} = {\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}(U_{t})O_{p}(1/\sqrt{Nh}+\sqrt{T}/N) \). So

$$\begin{aligned} \frac{\sqrt{T}}{T}{\mathbf {b}}= & {} \frac{\sqrt{T}}{T}\mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }{\mathbf {S}}\mathbf {{\overline{V}}}_{R}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }\nonumber \\= & {} \frac{1}{T}\sum _{t=1}^{T}\left( \mathbf {{\overline{Z}}}^{0}_{t}-\left( \begin{array}{c} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}{\mathbf {X}}_{t}\\ {\mathbf {0}}_{(d-R)\times 1} \\ \end{array} \right) \right) {\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }\nonumber \\&\times O_{p}\left( \frac{1}{\sqrt{Nh}}+\frac{\sqrt{T}}{N}\right) [1+O_{p}(c_{NTh})]\nonumber \\= & {} \left[ \left( \begin{array}{c} \varvec{\varSigma }_{F}{\mathbf {L}}\\ {\mathbf {0}}\\ \end{array} \right) -\left( \begin{array}{c} \varvec{\varSigma }_{F}{\mathbf {L}}\\ {\mathbf {0}}\\ \end{array} \right) +O_{p}\left( \frac{1}{\sqrt{T}}+\frac{1}{\sqrt{N}}\right) \right] \varvec{\varOmega }^{-1}_{xx}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }\nonumber \\&\times O_{p}\left( \frac{1}{\sqrt{Nh}}+\frac{\sqrt{T}}{N}\right) \nonumber \\= & {} O_{p}\left( \frac{1}{\sqrt{NTh}}+\frac{1}{N}+\frac{1}{N\sqrt{h}}+\frac{\sqrt{T}}{N\sqrt{N}}\right) \end{aligned}$$
(7.39)

The implication of (7.39) is that \(\sqrt{T}/T {\mathbf {b}}\) is negligible if \(N^2 h\rightarrow \infty \) and \(T/N^{3}\rightarrow 0\) (both are true if \(\sqrt{T}/N\rightarrow 0\) and \(\sqrt{T}h\rightarrow \infty \)).

In the last step, we show the limit of the term having \(\varvec{\varvec{\epsilon }}\). We first observe that

$$\begin{aligned} \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\varvec{\varvec{\epsilon }} = \sum _{t=1}^{T}\left( \mathbf {{\overline{Z}}}^{0}_{t}-\left( \begin{array}{c} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}\\ {\mathbf {0}}_{(d-R)\times 1} \\ \end{array} \right) \right) \epsilon _{t} [1+O_{p}(c_{NTh})]\nonumber \\ \end{aligned}$$
(7.40)

then

$$\begin{aligned} \frac{\sqrt{T}}{T}\mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})\varvec{\epsilon }&{\mathop {\rightarrow }\limits ^{\mathrm {d}}}&\text {N}({\mathbf {0}},\sigma ^{2}\varvec{\varSigma }) \end{aligned}$$
(7.41)

where \(\varvec{\varSigma }\) is expressed in (7.35). Combining these terms, we have

$$\begin{aligned}&\varvec{{\widehat{\lambda }}}_{C}^{0}-\left( \begin{array}{c} \varvec{\mathrm {I}}_{R\times R}\\ {\mathbf {0}}_{(d-R)\times R} \\ \end{array} \right) \varvec{\lambda }=O_{p}(c^2_{NTh})+O_{p}(1/\sqrt{T})\nonumber \\&\quad - \lim _{N,T\rightarrow \infty } \varvec{\varSigma }^{-1}\frac{1}{\sqrt{T}}\left( \begin{array}{c} \sqrt{T}/T[\mathbf {F^{\top }}\mathbf {{\overline{V}}}_{R}+{\mathbf {D}}_{R}^{-1\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}]\\ \frac{\sqrt{NT}}{T}\left[ \mathbf {{\overline{V}}}^{\top }_{-R}\mathbf {{\overline{V}}}_{R} -({\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R})^{\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\right] \\ \end{array} \right) {\mathbf {D}}^{-1}_{R}\varvec{\lambda }\nonumber \\ \end{aligned}$$
(7.42)

\(\square \)

Part (b) Due to \( \varvec{{\widehat{\lambda }}}_{C}={\mathbf {B}}{\mathbf {A}}_{N} \varvec{{\widehat{\lambda }}}_{C}^{0}\), we pre-multiply \({\mathbf {B}}{\mathbf {A}}_{N}\) to (7.42). First we observe that \({\mathbf {B}}{\mathbf {A}}_{N}\varvec{\varSigma }^{-1}=\left( \begin{array}{cc} {\mathbf {D}}_{R}^{-1}\varvec{\varSigma }^{-1}_{11} &{} -\sqrt{N}{\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R} \varvec{\varSigma }^{-1}_{22} \\ {\mathbf {0}}_{(d-R)\times R}&{} \sqrt{N}\varvec{\varSigma }^{-1}_{22} \\ \end{array} \right) \) where \(\varvec{\varSigma }_{11} \) and \(\varvec{\varSigma }_{22} \) refer to the two diagonal block matrices in \(\varvec{\varSigma }\) respectively. So if \(\sqrt{T}/N\rightarrow 0\), \(Th^8\rightarrow 0\), then \(\frac{\sqrt{T}}{\sqrt{N}}\Vert {\mathbf {B}}{\mathbf {A}}_{N}\varvec{\varSigma }^{-1}\Vert O_{p}(c^2_{NTh})=o_{p}(1)\).

Next, pre-multiplying \(\frac{\sqrt{T}}{\sqrt{N}}{\mathbf {B}}{\mathbf {A}}_{N}\) to the 3rd term of the right hand side of (7.42) yields

$$\begin{aligned}&\lim _{N,T\rightarrow \infty }\frac{1}{\sqrt{N}}{\mathbf {B}}{\mathbf {A}}_{N}\varvec{\varSigma }^{-1}\left( \begin{array}{c} \sqrt{T}/T[\mathbf {F^{\top }}\mathbf {{\overline{V}}}_{R}+{\mathbf {D}}_{R}^{-1\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}]\\ \frac{\sqrt{NT}}{T}\left[ \mathbf {{\overline{V}}}^{\top }_{-R}\mathbf {{\overline{V}}}_{R} -({\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R})^{\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\right] \\ \end{array} \right) {\mathbf {D}}^{-1}_{R}\varvec{\lambda }\\&\quad = \lim _{N,T\rightarrow \infty } \left( \begin{array}{c} -{\mathbf {D}}^{-1}_{R}{\mathbf {D}}_{-R} \varvec{\varSigma }^{-1}_{22}\frac{\sqrt{NT}}{T}\left[ \mathbf {{\overline{V}}}^{\top }_{-R}\mathbf {{\overline{V}}}_{R} -({\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R})^{\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\right] \\ \frac{\sqrt{NT}}{T}\varvec{\varSigma }^{-1}_{22}\left[ \mathbf {{\overline{V}}}^{\top }_{-R}\mathbf {{\overline{V}}}_{R} -({\mathbf {D}}_{R}^{-1}{\mathbf {D}}_{-R})^{\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\right] \\ \end{array} \right) {\mathbf {D}}^{-1}_{R}\varvec{\lambda } \end{aligned}$$

At last \(\varvec{\varSigma }_{C}\) can be derived from \(\lim _{N,T\rightarrow \infty }\frac{T}{N}\frac{1}{T} {\mathbf {B}}{\mathbf {A}}_{N}\varvec{\varSigma }^{-1}A_{N}^{\top }{\mathbf {B}}^{\top }\). \(\blacksquare \)

Proof of Theorem 6

According to (13)

$$\begin{aligned} \widehat{\varvec{\beta }}_{C}(u) = (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)({\mathbf {Y}}-\mathbf {{\overline{Z}}}\varvec{{\widehat{\lambda }}}_{C}) \end{aligned}$$

we first have

$$\begin{aligned} \widehat{\varvec{\beta }}_{C}(u)-\varvec{\beta }(u)= & {} \frac{h^{2}}{2} (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\widetilde{A}}}(u)\varvec{\beta }^{\prime \prime }(\xi )\nonumber \\&\quad + (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)({\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C})\nonumber \\&\quad + (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\varvec{\varvec{\epsilon }}\nonumber \\\equiv & {} J_{1}+J_{2}+J_{3} \end{aligned}$$
(7.43)

where \(\xi \) lies between \(U_{t}\) and u.

For \(J_{2}\), we first decompose it into

$$\begin{aligned} J_{2}= & {} (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\left[ {\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}}^{0}\left( \begin{array}{c} \varvec{\mathrm {I}}_{R\times R}\\ {\mathbf {0}}_{(d-R)\times R} \\ \end{array} \right) \varvec{\lambda }\right] \nonumber \\&\quad +\, (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\nonumber \\&\quad \times \left[ \mathbf {{\overline{Z}}}^{0}\left( \begin{array}{c} \varvec{\mathrm {I}}_{R\times R}\\ {\mathbf {0}}_{(d-R)\times R} \\ \end{array} \right) \varvec{\lambda }-\mathbf {{\overline{Z}}}^{0} \varvec{{\widehat{\lambda }}}_{C}^{0}\right] \nonumber \\\equiv & {} \, J_{21}+J_{22} \end{aligned}$$
(7.44)

We can first observe that \(T^{-1} {\mathbf {X}}^{\top }{\mathbf {K}}_{h}(u)\mathbf {{\overline{V}}}=T^{-1} {\mathbf {L}}^{\top }{\mathbf {F}}^{\top }{\mathbf {K}}_{h}(u)\overline{{\mathbf {V}}} +T^{-1}\sum _{t=1}^{T}{\mathbf {e}}_{t}\overline{{\mathbf {V}}}^{\top }_{t}k_{h}(U_{t}-u) =O_{p}(1/\sqrt{NTh})+N^{-1}f(u)\varvec{\varSigma }_{ev}+O_{p}(h^2/N)+O_{p}(1/(N\sqrt{Th}))\) where \(\varvec{\varSigma }_{ev}=\mathrm {E}({\mathbf {e}}_{t}{\mathbf {V}}_{jt}^{\top })\). Then \(J_{21}\) can be rewritten as

$$\begin{aligned} \sqrt{Th}J_{21}= & {} \sqrt{Th}(\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p}) \left[ \mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u) \mathbf {{\widetilde{X}}}(u)\right] ^{+}\mathbf {{\widetilde{X}}}^{\top }(u){\mathbf {K}}_{h}(u)\mathbf {{\overline{V}}}_{R}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }\\= & {} \frac{\sqrt{Th}}{N}[{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{e}]^{-1}\varvec{\varSigma }_{ev,R}{\mathbf {D}}^{-1}_{R}\varvec{\lambda }+O_{p}\left( \frac{1}{\sqrt{N}}\right) \end{aligned}$$

where \(\varvec{\varSigma }_{ev,R}\) is the left \(p\times R\) block matrix of \(\varvec{\varSigma }_{ev}\).

For \(J_{22}\), according to (7.12) and (7.11), it can be rewritten as

$$\begin{aligned}&\sqrt{Th}J_{22}\nonumber \\&\quad = (\varvec{\mathrm {I}}_{p}, {\mathbf {0}}_{p\times p})\left( \begin{array}{cc} \varvec{\varOmega }_{xx}(u) &{} {\mathbf {0}}_{p\times p} \\ {\mathbf {0}}_{p\times p} &{} \mu _{2}\varvec{\varOmega }_{xx}(u) \\ \end{array} \right) ^{+} \left( \begin{array}{cc} {\mathbf {L}}^{\top }\varvec{\varSigma }_{F} &{} {\mathbf {0}}_{p\times (d-R)} \\ {\mathbf {0}}_{p\times R} &{} {\mathbf {0}}_{p\times (d-R)} \\ \end{array} \right) [1+O_{p}(c_{NTh})]\nonumber \\&\qquad \times \,\sqrt{Th}\left[ \left( \begin{array}{c} \varvec{\mathrm {I}}_{R\times R}\\ {\mathbf {0}}_{(d-R)\times R} \\ \end{array} \right) \varvec{\lambda }- \varvec{{\widehat{\lambda }}}_{C}^{0}\right] \nonumber \\&\quad = \left( \varvec{\varOmega }_{xx}(u)^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F},{\mathbf {0}}_{p\times (d-R)}\right) \sqrt{Th}\left[ \left( \begin{array}{c} \varvec{\mathrm {I}}_{R\times R}\\ {\mathbf {0}}_{(d-R)\times R} \\ \end{array} \right) \varvec{\lambda }- \varvec{{\widehat{\lambda }}}_{C}^{0}\right] [1+O_{p}(c_{NTh})]\nonumber \\ \end{aligned}$$
(7.45)

Therefore the asymptotic properties of \(\sqrt{Th}J_{22}\) depend on (7.42). We first look at the order \(O_{p}(c^2_{NTh})\) which comes from (7.36). Thus multiplying \(\sqrt{Th}\) to (7.36) and selecting the upper R rows, we have

$$\begin{aligned}&\frac{\sqrt{Th}}{T}(\varvec{\mathrm {I}}_{R}, {\mathbf {0}}_{R\times (d-R)})\left[ \mathbf {{\overline{Z}}}^{0\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}_{T}-{\mathbf {S}}){\mathbf {M}}\right] =(\varvec{\mathrm {I}}_{R}, {\mathbf {0}}_{R\times (d-R)})\nonumber \\&\frac{\sqrt{Th}}{T}\sum _{t=1}^{T}\left( \mathbf {{\overline{Z}}}^{0}_{t}-\left( \begin{array}{c} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}\\ {\mathbf {0}}_{(d-R)\times 1} \\ \end{array} \right) \right) {\mathbf {X}}_{t}^{\top }\varvec{\beta }(U_{t})[1+O_{p}(c_{NTh})] O_{p}(c_{NTh})\nonumber \\&\quad = O_{p}(c_{NTh})\frac{\sqrt{Th}}{T}\sum _{t=1}^{T}[{\mathbf {f}}_{t}{\mathbf {X}}_{t}^{\top }\varvec{\beta }(U_{t})+\mathbf {{\overline{V}}}_{t}{\mathbf {X}}_{t}^{\top }\varvec{\beta }(U_{t})]\nonumber \\&\qquad -O_{p}(c_{NTh})\frac{\sqrt{Th}}{T}\sum _{t=1}^{T} \varvec{\varSigma }_{F} {\mathbf {L}}\varvec{\varOmega }^{-1}_{xx}(U_{t}){\mathbf {X}}_{t}{\mathbf {X}}_{t}^{\top }\varvec{\beta }(U_{t}) \nonumber \\&\quad = O_{p}(\sqrt{Th}/N)O_{p}(c_{NTh}) \end{aligned}$$
(7.46)

For the 2nd term of the right hand side of (7.42), multiplying \(\sqrt{Th}\) to it yields \(O_{p}(\sqrt{h})\). Left-multiplying \(\sqrt{Th}\left( \varvec{\varOmega }_{xx}(u)^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F},{\mathbf {0}}_{p\times (d-R)}\right) \) to the 3rd term yields \(\varvec{\varOmega }_{xx}(u)^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\varvec{\varSigma }_{11} ^{-1}\frac{\sqrt{Th}}{T}[\mathbf {F^{\top }}\mathbf {{\overline{V}}}_{R}+{\mathbf {D}}_{R}^{-1\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}] =O_{p}(\sqrt{h}/\sqrt{N})+\frac{\sqrt{Th}}{T}\varvec{\varOmega }_{xx}(u)^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\varvec{\varSigma }_{11} ^{-1}{\mathbf {D}}_{R}^{-1\top }\mathbf {{\overline{V}}}^{\top }_{R}\mathbf {{\overline{V}}}_{R}\) where the latter term is of order \(O_{p}(\sqrt{Th}/N)\).

Therefore, \(\sqrt{Th}J_{2}=O_{p}(\frac{\sqrt{Th}}{N})+O_{p}(\frac{1}{\sqrt{N}})+O_{p}(\sqrt{Th}/N)O_{p}(c_{NTh})\). \(\blacksquare \)

Proofs of Theorems 7 and 8. We left multiply \((\varvec{\mathrm {I}}_{R\times R},{\mathbf {0}}_{R\times (d-R)})\) to (7.42), then we have

$$\begin{aligned} \sqrt{T}\left( {\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C}-\varvec{\lambda }\right)&{\mathop {\rightarrow }\limits ^{\mathrm {d}}}&\text {N}({\mathbf {0}},\sigma ^{2}\varvec{\varSigma }_{11} ^{-1}) \end{aligned}$$
(7.47)

where \(\varvec{\varSigma }_{11} \) is the upper left block matrix \(\varvec{\varSigma }_{F}-\varvec{\varSigma }_{F}{\mathbf {L}}({\mathbf {L}}^{\top }\varvec{\varSigma }_{F}{\mathbf {L}}+\varvec{\varSigma }_{v})^{+}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\) of \(\varvec{\varSigma }\). Based upon (7.47), a Wald test statistic can be constructed

$$\begin{aligned} T \varvec{{\widehat{\lambda }}}_{C}^{\top }{\mathbf {D}}^{\top }(\sigma ^{-2}\varvec{\varSigma }_{11} ){\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C} {\mathop {\rightarrow }\limits ^{\mathrm {d}}}\chi ^{2}(R,\psi _{D}) \end{aligned}$$

To estimate \({\mathbf {D}}^{\top }\varvec{\varSigma }_{11}{\mathbf {D}} \), we use \(T^{-1}\overline{{\mathbf {Z}}}^{\top }\overline{{\mathbf {Z}}}-T^{-1}\overline{{\mathbf {Z}}}^{\top }{\mathbf {X}} [T^{-1}{\mathbf {X}}^{\top }{\mathbf {X}}]^{-1}T^{-1}{\mathbf {X}}^{\top }\overline{{\mathbf {Z}}}\). But note that the rank is d rather than R. Hence replacing \({\mathbf {D}}^{\top }\varvec{\varSigma }_{11}{\mathbf {D}} \) with the estimator, the chi-squared distribution has d degrees of freedom. To see this,

$$\begin{aligned}&T \sigma ^{-2} \varvec{{\widehat{\lambda }}}_{C}^{\top }\left[ T^{-1}\overline{{\mathbf {Z}}}^{\top }\overline{{\mathbf {Z}}}-T^{-1}\overline{{\mathbf {Z}}}^{\top }{\mathbf {X}} (T^{-1}{\mathbf {X}}^{\top }{\mathbf {X}})^{-1}T^{-1}{\mathbf {X}}^{\top }\overline{{\mathbf {Z}}}\right] \varvec{{\widehat{\lambda }}}_{C}\nonumber \\&\quad = T \sigma ^{-2} \varvec{{\widehat{\lambda }}}_{C}^{0\top }\left[ T^{-1}\overline{{\mathbf {Z}}}^{0\top }\overline{{\mathbf {Z}}}^{0}-T^{-1}\overline{{\mathbf {Z}}}^{0\top }{\mathbf {X}} (T^{-1}{\mathbf {X}}^{\top }{\mathbf {X}})^{-1}T^{-1}{\mathbf {X}}^{\top }\overline{{\mathbf {Z}}}^{0}\right] \varvec{{\widehat{\lambda }}}^{0}_{C}\nonumber \\&\quad {\mathop {\rightarrow }\limits ^{\mathrm {P}}} T\sigma ^{-2} \varvec{{\widehat{\lambda }}}_{C} ^{0\top }\varvec{\varSigma } \varvec{{\widehat{\lambda }}}_{C}^{0} \end{aligned}$$
(7.48)

Based on (7.42), we can get the desired result. The convergency of the estimator \({\widehat{\sigma }}_{C}^2\) will be dealt with in the following theorem. \(\blacksquare \)

Proof of Theorem 9. In the first place, we will show that \(T^{-1}{\mathrm {RSS}}_{1}=\sigma ^{2}(1+o_{p}(1))\). Let us start by decomposing

$$\begin{aligned} {\mathrm {RSS}}_{1}&= [{\mathbf {Y}}-\mathbf {{\widetilde{M}}}-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }[{\mathbf {Y}}-\mathbf {{\widetilde{M}}}-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]\nonumber \\&\quad = [{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}+{\mathbf {M}}+\varvec{\epsilon }]^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}+{\mathbf {M}}+\varvec{\epsilon }]\nonumber \\&= \varvec{\epsilon }^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})\varvec{\epsilon } +[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]\nonumber \\&\quad +{\mathbf {M}}^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}}){\mathbf {M}} +\varvec{\epsilon }^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}}){\mathbf {M}}+{\mathbf {M}}^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})\varvec{\epsilon }\nonumber \\&\quad +\,{\mathbf {M}}^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}] +[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}}){\mathbf {M}}\nonumber \\&\quad +\,\varvec{\epsilon }^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}] +[{\mathbf {F}}\varvec{\lambda }-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})\varvec{\epsilon }\nonumber \\&\equiv J_{1}+\cdots +J_{9} \end{aligned}$$
(7.49)

where \(T^{-1}J_{1}=\sigma ^{2}(1+o_{p}(1))\), \(T^{-1}J_{3}=O_{p}(c_{NTh}^{2})\), \(T^{-1}J_{4}=T^{-1}J_{5}=O_{p}(c_{NTh})\) are easy to derive. Now we only focus on

$$\begin{aligned} T^{-1}J_{2}= & {} T^{-1} [{\mathbf {F}}(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})-\mathbf {{\overline{V}}} \varvec{{\widehat{\lambda }}}_{C}] ^{\top } (\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})-\mathbf {{\overline{V}}} \varvec{{\widehat{\lambda }}}_{C}]\nonumber \\\equiv & {} J_{21}+J_{22}+J_{22}^{\top }+J_{24}=O_{p}\left( 1/T+1/N\right) \end{aligned}$$

where

$$\begin{aligned}&J_{21} = T^{-1} (\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C}) ^{\top } \mathbf {F^{\top }} (\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}}){\mathbf {F}}(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C}) =(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C}) ^{\top }\\&\quad \frac{1}{T}\sum _{t=1}^{T}\left( {\mathbf {f}}_{t}^{\top }-{\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\right) ^{\top }\left( {\mathbf {f}}_{t}^{\top }-{\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\right) (\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})[1+o_{p}(1)]\\&\quad =O_{p}(1/T)\\&\quad J_{22}= T^{-1} \varvec{{\widehat{\lambda }}}_{C} ^{\top }\mathbf {{\overline{V}}} ^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}}){\mathbf {F}}(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})\\&\quad = \varvec{{\widehat{\lambda }}}_{C} ^{\top }\frac{1}{T}\sum _{t=1}^{T}\mathbf {{\overline{V}}}_{t}\left( {\mathbf {f}}_{t}^{\top }-{\mathbf {X}}_{t}^{\top } \varvec{\varOmega }^{-1}_{xx}{\mathbf {L}}^{\top }\varvec{\varSigma }_{F}\right) (\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})[1+o_{p}(1)]=O_{p}(1/(T\sqrt{N}))\\&J_{24}= T^{-1} \varvec{{\widehat{\lambda }}}_{C} ^{\top }\mathbf {{\overline{V}}} ^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{V}}} \varvec{{\widehat{\lambda }}}_{C}= \varvec{{\widehat{\lambda }}}_{C} ^{\top }\frac{1}{T}\sum _{t=1}^{T}\mathbf {{\overline{V}}}_{t}\mathbf {{\overline{V}}}^{\top }_{t} \varvec{{\widehat{\lambda }}}_{C}[1+o_{p}(1)]=O_{p}(1/N) \end{aligned}$$

In a similar way, we have

$$\begin{aligned}&T^{-1}J_{6} =T^{-1}J_{7}= T^{-1} {\mathbf {M}}^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})-\mathbf {{\overline{V}}} \varvec{{\widehat{\lambda }}}_{C}]\\&\quad =O_{p}\left( \frac{1}{\sqrt{T}}c_{NTh}\right) \\&T^{-1}J_{8} =T^{-1}J_{9}=T^{-1}\varvec{\epsilon }^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})[{\mathbf {F}}(\varvec{\lambda }-{\mathbf {D}} \varvec{{\widehat{\lambda }}}_{C})-\mathbf {{\overline{V}}} \varvec{{\widehat{\lambda }}}_{C}]\\&\quad =O_{p}\left( \frac{1}{T}+\frac{1}{\sqrt{NT}}\right) \end{aligned}$$

If the loadings in Y equations are zero, we do not need to apply CCE technique. Then

$$\begin{aligned}&{\mathrm {RSS}}_{0} = [{\mathbf {Y}}-\mathbf {{\widetilde{M}}}-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}+(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }[{\mathbf {Y}}-\mathbf {{\widetilde{M}}}-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}+(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]\nonumber \\&\quad = {\mathrm {RSS}}_{1}+J_{1}+[{\mathbf {Y}}-\mathbf {{\widetilde{M}}}-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }[(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]+[(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }[{\mathbf {Y}}-\mathbf {{\widetilde{M}}}-\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]\nonumber \\ \end{aligned}$$
(7.50)

where the last two terms converge to 0 while \( T^{-1} J_{1} = T^{-1} [(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}]^{\top }[(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}} \varvec{{\widehat{\lambda }}}_{C}] =T^{-1} \varvec{{\widehat{\lambda }}}_{C} ^{0\top }\mathbf {{\overline{Z}}} ^{0\top }(\varvec{\mathrm {I}}-{\mathbf {S}})^{\top }(\varvec{\mathrm {I}}-{\mathbf {S}})\mathbf {{\overline{Z}}}^{0} \varvec{{\widehat{\lambda }}}_{C}^{0}{\mathop {\rightarrow }\limits ^{\mathrm {P}}} \varvec{{\widehat{\lambda }}}_{C} ^{0\top }\varvec{\varSigma } \varvec{{\widehat{\lambda }}}_{C}^{0} \). Then

$$\begin{aligned} T^{-1}({\mathrm {RSS}}_{0}-{\mathrm {RSS}}_{1})=T^{-1}J_{1}&{\mathop {\rightarrow }\limits ^{\mathrm {P}}}&\varvec{{\widehat{\lambda }}}_{C} ^{0\top }\varvec{\varSigma } \varvec{{\widehat{\lambda }}}_{C}^{0} \end{aligned}$$
(7.51)

Based on (7.42), it is easy to obtain the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M. Tests for the explanatory power of latent factors. Stat Papers 62, 2825–2856 (2021). https://doi.org/10.1007/s00362-020-01216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-020-01216-x

Keywords

Mathematics Subject Classification

Navigation